LiDAR Meta Depth Completion Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.12761
Depth estimation is one of the essential tasks to be addressed when creating mobile autonomous systems. While monocular depth estimation methods have improved in recent times, depth completion provides more accurate and reliable depth maps by additionally using sparse depth information from other sensors such as LiDAR. However, current methods are specifically trained for a single LiDAR sensor. As the scanning pattern differs between sensors, every new sensor would require re-training a specialized depth completion model, which is computationally inefficient and not flexible. Therefore, we propose to dynamically adapt the depth completion model to the used sensor type enabling LiDAR adaptive depth completion. Specifically, we propose a meta depth completion network that uses data patterns derived from the data to learn a task network to alter weights of the main depth completion network to solve a given depth completion task effectively. The method demonstrates a strong capability to work on multiple LiDAR scanning patterns and can also generalize to scanning patterns that are unseen during training. While using a single model, our method yields significantly better results than a non-adaptive baseline trained on different LiDAR patterns. It outperforms LiDAR-specific expert models for very sparse cases. These advantages allow flexible deployment of a single depth completion model on different sensors, which could also prove valuable to process the input of nascent LiDAR technology with adaptive instead of fixed scanning patterns.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.12761
- https://arxiv.org/pdf/2307.12761
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385261942
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385261942Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.12761Digital Object Identifier
- Title
-
LiDAR Meta Depth CompletionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-24Full publication date if available
- Authors
-
Wolfgang Boettcher, Lukas Hoyer, Ozan Unal, Dengxin DaiList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.12761Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.12761Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.12761Direct OA link when available
- Concepts
-
Lidar, Computer science, Monocular, Task (project management), Process (computing), Artificial intelligence, Ranging, Software deployment, Computer vision, Remote sensing, Engineering, Geography, Systems engineering, Operating system, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385261942 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.12761 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.12761 |
| ids.openalex | https://openalex.org/W4385261942 |
| fwci | |
| type | preprint |
| title | LiDAR Meta Depth Completion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T10638 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9948999881744385 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Optical measurement and interference techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51399673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9203532934188843 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[0].display_name | Lidar |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7249042987823486 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C65909025 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5885898470878601 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1945033 |
| concepts[2].display_name | Monocular |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5491601824760437 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5256491899490356 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5216957926750183 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C115051666 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5141849517822266 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6522493 |
| concepts[6].display_name | Ranging |
| concepts[7].id | https://openalex.org/C105339364 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5029274821281433 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2297740 |
| concepts[7].display_name | Software deployment |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3997567296028137 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C62649853 |
| concepts[9].level | 1 |
| concepts[9].score | 0.28819766640663147 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[9].display_name | Remote sensing |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.10539937019348145 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09591138362884521 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C201995342 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[12].display_name | Systems engineering |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/lidar |
| keywords[0].score | 0.9203532934188843 |
| keywords[0].display_name | Lidar |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7249042987823486 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/monocular |
| keywords[2].score | 0.5885898470878601 |
| keywords[2].display_name | Monocular |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.5491601824760437 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.5256491899490356 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5216957926750183 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/ranging |
| keywords[6].score | 0.5141849517822266 |
| keywords[6].display_name | Ranging |
| keywords[7].id | https://openalex.org/keywords/software-deployment |
| keywords[7].score | 0.5029274821281433 |
| keywords[7].display_name | Software deployment |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.3997567296028137 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/remote-sensing |
| keywords[9].score | 0.28819766640663147 |
| keywords[9].display_name | Remote sensing |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.10539937019348145 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.09591138362884521 |
| keywords[11].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.12761 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.12761 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.12761 |
| locations[1].id | doi:10.48550/arxiv.2307.12761 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.12761 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5112967201 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wolfgang Boettcher |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Boettcher, Wolfgang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053328232 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7391-0676 |
| authorships[1].author.display_name | Lukas Hoyer |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hoyer, Lukas |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5090395353 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1121-3883 |
| authorships[2].author.display_name | Ozan Unal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Unal, Ozan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5078838951 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5440-9678 |
| authorships[3].author.display_name | Dengxin Dai |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Dai, Dengxin |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.12761 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LiDAR Meta Depth Completion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W2783354812, https://openalex.org/W4312958259, https://openalex.org/W2103009189, https://openalex.org/W4390813131, https://openalex.org/W2349383066, https://openalex.org/W4308259661, https://openalex.org/W4328132048, https://openalex.org/W1969901537, https://openalex.org/W2594043982, https://openalex.org/W3036493597 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.12761 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.12761 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.12761 |
| primary_location.id | pmh:oai:arXiv.org:2307.12761 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.12761 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.12761 |
| publication_date | 2023-07-24 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 54, 71, 106, 121, 135, 144, 168, 178, 201 |
| abstract_inverted_index.As | 58 |
| abstract_inverted_index.It | 186 |
| abstract_inverted_index.as | 45 |
| abstract_inverted_index.be | 9 |
| abstract_inverted_index.by | 35 |
| abstract_inverted_index.in | 23 |
| abstract_inverted_index.is | 2, 77 |
| abstract_inverted_index.of | 4, 127, 200, 218, 225 |
| abstract_inverted_index.on | 149, 182, 206 |
| abstract_inverted_index.to | 8, 86, 93, 119, 124, 133, 147, 158, 214 |
| abstract_inverted_index.we | 84, 104 |
| abstract_inverted_index.The | 141 |
| abstract_inverted_index.and | 31, 80, 154 |
| abstract_inverted_index.are | 50, 162 |
| abstract_inverted_index.can | 155 |
| abstract_inverted_index.for | 53, 191 |
| abstract_inverted_index.new | 66 |
| abstract_inverted_index.not | 81 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.our | 171 |
| abstract_inverted_index.the | 5, 59, 89, 94, 117, 128, 216 |
| abstract_inverted_index.also | 156, 211 |
| abstract_inverted_index.data | 113, 118 |
| abstract_inverted_index.from | 41, 116 |
| abstract_inverted_index.have | 21 |
| abstract_inverted_index.main | 129 |
| abstract_inverted_index.maps | 34 |
| abstract_inverted_index.meta | 107 |
| abstract_inverted_index.more | 29 |
| abstract_inverted_index.such | 44 |
| abstract_inverted_index.task | 122, 139 |
| abstract_inverted_index.than | 177 |
| abstract_inverted_index.that | 111, 161 |
| abstract_inverted_index.type | 97 |
| abstract_inverted_index.used | 95 |
| abstract_inverted_index.uses | 112 |
| abstract_inverted_index.very | 192 |
| abstract_inverted_index.when | 11 |
| abstract_inverted_index.with | 222 |
| abstract_inverted_index.work | 148 |
| abstract_inverted_index.Depth | 0 |
| abstract_inverted_index.LiDAR | 56, 99, 151, 184, 220 |
| abstract_inverted_index.These | 195 |
| abstract_inverted_index.While | 16, 166 |
| abstract_inverted_index.adapt | 88 |
| abstract_inverted_index.allow | 197 |
| abstract_inverted_index.alter | 125 |
| abstract_inverted_index.could | 210 |
| abstract_inverted_index.depth | 18, 26, 33, 39, 73, 90, 101, 108, 130, 137, 203 |
| abstract_inverted_index.every | 65 |
| abstract_inverted_index.fixed | 226 |
| abstract_inverted_index.given | 136 |
| abstract_inverted_index.input | 217 |
| abstract_inverted_index.learn | 120 |
| abstract_inverted_index.model | 92, 205 |
| abstract_inverted_index.other | 42 |
| abstract_inverted_index.prove | 212 |
| abstract_inverted_index.solve | 134 |
| abstract_inverted_index.tasks | 7 |
| abstract_inverted_index.using | 37, 167 |
| abstract_inverted_index.which | 76, 209 |
| abstract_inverted_index.would | 68 |
| abstract_inverted_index.LiDAR. | 46 |
| abstract_inverted_index.better | 175 |
| abstract_inverted_index.cases. | 194 |
| abstract_inverted_index.during | 164 |
| abstract_inverted_index.expert | 189 |
| abstract_inverted_index.method | 142, 172 |
| abstract_inverted_index.mobile | 13 |
| abstract_inverted_index.model, | 75, 170 |
| abstract_inverted_index.models | 190 |
| abstract_inverted_index.recent | 24 |
| abstract_inverted_index.sensor | 67, 96 |
| abstract_inverted_index.single | 55, 169, 202 |
| abstract_inverted_index.sparse | 38, 193 |
| abstract_inverted_index.strong | 145 |
| abstract_inverted_index.times, | 25 |
| abstract_inverted_index.unseen | 163 |
| abstract_inverted_index.yields | 173 |
| abstract_inverted_index.between | 63 |
| abstract_inverted_index.current | 48 |
| abstract_inverted_index.derived | 115 |
| abstract_inverted_index.differs | 62 |
| abstract_inverted_index.instead | 224 |
| abstract_inverted_index.methods | 20, 49 |
| abstract_inverted_index.nascent | 219 |
| abstract_inverted_index.network | 110, 123, 132 |
| abstract_inverted_index.pattern | 61 |
| abstract_inverted_index.process | 215 |
| abstract_inverted_index.propose | 85, 105 |
| abstract_inverted_index.require | 69 |
| abstract_inverted_index.results | 176 |
| abstract_inverted_index.sensor. | 57 |
| abstract_inverted_index.sensors | 43 |
| abstract_inverted_index.trained | 52, 181 |
| abstract_inverted_index.weights | 126 |
| abstract_inverted_index.However, | 47 |
| abstract_inverted_index.accurate | 30 |
| abstract_inverted_index.adaptive | 100, 223 |
| abstract_inverted_index.baseline | 180 |
| abstract_inverted_index.creating | 12 |
| abstract_inverted_index.enabling | 98 |
| abstract_inverted_index.flexible | 198 |
| abstract_inverted_index.improved | 22 |
| abstract_inverted_index.multiple | 150 |
| abstract_inverted_index.patterns | 114, 153, 160 |
| abstract_inverted_index.provides | 28 |
| abstract_inverted_index.reliable | 32 |
| abstract_inverted_index.scanning | 60, 152, 159, 227 |
| abstract_inverted_index.sensors, | 64, 208 |
| abstract_inverted_index.systems. | 15 |
| abstract_inverted_index.valuable | 213 |
| abstract_inverted_index.addressed | 10 |
| abstract_inverted_index.different | 183, 207 |
| abstract_inverted_index.essential | 6 |
| abstract_inverted_index.flexible. | 82 |
| abstract_inverted_index.monocular | 17 |
| abstract_inverted_index.patterns. | 185, 228 |
| abstract_inverted_index.training. | 165 |
| abstract_inverted_index.Therefore, | 83 |
| abstract_inverted_index.advantages | 196 |
| abstract_inverted_index.autonomous | 14 |
| abstract_inverted_index.capability | 146 |
| abstract_inverted_index.completion | 27, 74, 91, 109, 131, 138, 204 |
| abstract_inverted_index.deployment | 199 |
| abstract_inverted_index.estimation | 1, 19 |
| abstract_inverted_index.generalize | 157 |
| abstract_inverted_index.technology | 221 |
| abstract_inverted_index.completion. | 102 |
| abstract_inverted_index.dynamically | 87 |
| abstract_inverted_index.inefficient | 79 |
| abstract_inverted_index.information | 40 |
| abstract_inverted_index.outperforms | 187 |
| abstract_inverted_index.re-training | 70 |
| abstract_inverted_index.specialized | 72 |
| abstract_inverted_index.additionally | 36 |
| abstract_inverted_index.demonstrates | 143 |
| abstract_inverted_index.effectively. | 140 |
| abstract_inverted_index.non-adaptive | 179 |
| abstract_inverted_index.specifically | 51 |
| abstract_inverted_index.Specifically, | 103 |
| abstract_inverted_index.significantly | 174 |
| abstract_inverted_index.LiDAR-specific | 188 |
| abstract_inverted_index.computationally | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |