Lifting Manifolds to Mitigate Pseudo-Alignment in LLM4TS Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.12847
Pseudo-Alignment is a pervasive challenge in many large language models for time series (LLM4TS) models, often causing them to underperform compared to linear models or randomly initialised backbones. However, there is limited discussion in the community for the reasons that pseudo-alignment occurs. In this work, we conduct a thorough investigation into the root causes of pseudo-alignment in LLM4TS and build a connection of pseudo-alignment to the cone effect in LLM. We demonstrate that pseudo-alignment arises from the interplay of cone effect within pretrained LLM components and the intrinsically low-dimensional manifold of time-series data. In addition, we also introduce \textit{\textbf{TimeSUP}}, a novel technique designed to mitigate this issue and improve forecast performance in existing LLM4TS approaches. TimeSUP addresses this by increasing the time series manifold to more closely match the intrinsic dimension of language embeddings, allowing the model to distinguish temporal signals clearly while still capturing shared structures across modalities. As a result, representations for time and language tokens remain distinct yet exhibit high cosine similarity, signifying that the model preserves each modality unique features while learning their commonalities in a unified embedding space. Empirically, TimeSUP consistently outperforms state-of-the-art LLM4TS methods and other lightweight baselines on long-term forecasting performance. Furthermore, it can be seamlessly integrated into four existing LLM4TS pipelines and delivers significant improvements in forecasting performance.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.12847
- https://arxiv.org/pdf/2510.12847
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415273582
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415273582Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.12847Digital Object Identifier
- Title
-
Lifting Manifolds to Mitigate Pseudo-Alignment in LLM4TSWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-14Full publication date if available
- Authors
-
Liangwei Nathan Zheng, Wenhao Liang, Wei Emma Zhang, Miao Xu, Olaf Maennel, Weitong ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.12847Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.12847Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.12847Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415273582 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.12847 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.12847 |
| ids.openalex | https://openalex.org/W4415273582 |
| fwci | |
| type | preprint |
| title | Lifting Manifolds to Mitigate Pseudo-Alignment in LLM4TS |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12810 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9527999758720398 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Real-time simulation and control systems |
| topics[1].id | https://openalex.org/T10559 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9215999841690063 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Particle Accelerators and Free-Electron Lasers |
| topics[2].id | https://openalex.org/T11808 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.909600019454956 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Superconducting Materials and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.12847 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.12847 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.12847 |
| locations[1].id | doi:10.48550/arxiv.2510.12847 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.12847 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102611893 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-2793-8110 |
| authorships[0].author.display_name | Liangwei Nathan Zheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zheng, Liangwei Nathan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5028242713 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1870-7461 |
| authorships[1].author.display_name | Wenhao Liang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liang, Wenhao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070697660 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0406-5974 |
| authorships[2].author.display_name | Wei Emma Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Wei Emma |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5016620131 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9409-6960 |
| authorships[3].author.display_name | Miao Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Miao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5006000047 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9621-0787 |
| authorships[4].author.display_name | Olaf Maennel |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Maennel, Olaf |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5053697754 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Weitong Chen |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chen, Weitong |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.12847 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-17T00:00:00 |
| display_name | Lifting Manifolds to Mitigate Pseudo-Alignment in LLM4TS |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12810 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9527999758720398 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Real-time simulation and control systems |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.12847 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.12847 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.12847 |
| primary_location.id | pmh:oai:arXiv.org:2510.12847 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.12847 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.12847 |
| publication_date | 2025-10-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 47, 60, 99, 150, 179 |
| abstract_inverted_index.As | 149 |
| abstract_inverted_index.In | 42, 93 |
| abstract_inverted_index.We | 70 |
| abstract_inverted_index.be | 201 |
| abstract_inverted_index.by | 118 |
| abstract_inverted_index.in | 5, 33, 56, 68, 111, 178, 213 |
| abstract_inverted_index.is | 1, 30 |
| abstract_inverted_index.it | 199 |
| abstract_inverted_index.of | 54, 62, 78, 90, 131 |
| abstract_inverted_index.on | 194 |
| abstract_inverted_index.or | 24 |
| abstract_inverted_index.to | 18, 21, 64, 103, 124, 137 |
| abstract_inverted_index.we | 45, 95 |
| abstract_inverted_index.LLM | 83 |
| abstract_inverted_index.and | 58, 85, 107, 155, 190, 209 |
| abstract_inverted_index.can | 200 |
| abstract_inverted_index.for | 10, 36, 153 |
| abstract_inverted_index.the | 34, 37, 51, 65, 76, 86, 120, 128, 135, 167 |
| abstract_inverted_index.yet | 160 |
| abstract_inverted_index.LLM. | 69 |
| abstract_inverted_index.also | 96 |
| abstract_inverted_index.cone | 66, 79 |
| abstract_inverted_index.each | 170 |
| abstract_inverted_index.four | 205 |
| abstract_inverted_index.from | 75 |
| abstract_inverted_index.high | 162 |
| abstract_inverted_index.into | 50, 204 |
| abstract_inverted_index.many | 6 |
| abstract_inverted_index.more | 125 |
| abstract_inverted_index.root | 52 |
| abstract_inverted_index.that | 39, 72, 166 |
| abstract_inverted_index.them | 17 |
| abstract_inverted_index.this | 43, 105, 117 |
| abstract_inverted_index.time | 11, 121, 154 |
| abstract_inverted_index.build | 59 |
| abstract_inverted_index.data. | 92 |
| abstract_inverted_index.issue | 106 |
| abstract_inverted_index.large | 7 |
| abstract_inverted_index.match | 127 |
| abstract_inverted_index.model | 136, 168 |
| abstract_inverted_index.novel | 100 |
| abstract_inverted_index.often | 15 |
| abstract_inverted_index.other | 191 |
| abstract_inverted_index.still | 143 |
| abstract_inverted_index.their | 176 |
| abstract_inverted_index.there | 29 |
| abstract_inverted_index.while | 142, 174 |
| abstract_inverted_index.work, | 44 |
| abstract_inverted_index.LLM4TS | 57, 113, 188, 207 |
| abstract_inverted_index.across | 147 |
| abstract_inverted_index.arises | 74 |
| abstract_inverted_index.causes | 53 |
| abstract_inverted_index.cosine | 163 |
| abstract_inverted_index.effect | 67, 80 |
| abstract_inverted_index.linear | 22 |
| abstract_inverted_index.models | 9, 23 |
| abstract_inverted_index.remain | 158 |
| abstract_inverted_index.series | 12, 122 |
| abstract_inverted_index.shared | 145 |
| abstract_inverted_index.space. | 182 |
| abstract_inverted_index.tokens | 157 |
| abstract_inverted_index.unique | 172 |
| abstract_inverted_index.within | 81 |
| abstract_inverted_index.TimeSUP | 115, 184 |
| abstract_inverted_index.causing | 16 |
| abstract_inverted_index.clearly | 141 |
| abstract_inverted_index.closely | 126 |
| abstract_inverted_index.conduct | 46 |
| abstract_inverted_index.exhibit | 161 |
| abstract_inverted_index.improve | 108 |
| abstract_inverted_index.limited | 31 |
| abstract_inverted_index.methods | 189 |
| abstract_inverted_index.models, | 14 |
| abstract_inverted_index.occurs. | 41 |
| abstract_inverted_index.reasons | 38 |
| abstract_inverted_index.result, | 151 |
| abstract_inverted_index.signals | 140 |
| abstract_inverted_index.unified | 180 |
| abstract_inverted_index.(LLM4TS) | 13 |
| abstract_inverted_index.However, | 28 |
| abstract_inverted_index.allowing | 134 |
| abstract_inverted_index.compared | 20 |
| abstract_inverted_index.delivers | 210 |
| abstract_inverted_index.designed | 102 |
| abstract_inverted_index.distinct | 159 |
| abstract_inverted_index.existing | 112, 206 |
| abstract_inverted_index.features | 173 |
| abstract_inverted_index.forecast | 109 |
| abstract_inverted_index.language | 8, 132, 156 |
| abstract_inverted_index.learning | 175 |
| abstract_inverted_index.manifold | 89, 123 |
| abstract_inverted_index.mitigate | 104 |
| abstract_inverted_index.modality | 171 |
| abstract_inverted_index.randomly | 25 |
| abstract_inverted_index.temporal | 139 |
| abstract_inverted_index.thorough | 48 |
| abstract_inverted_index.addition, | 94 |
| abstract_inverted_index.addresses | 116 |
| abstract_inverted_index.baselines | 193 |
| abstract_inverted_index.capturing | 144 |
| abstract_inverted_index.challenge | 4 |
| abstract_inverted_index.community | 35 |
| abstract_inverted_index.dimension | 130 |
| abstract_inverted_index.embedding | 181 |
| abstract_inverted_index.interplay | 77 |
| abstract_inverted_index.intrinsic | 129 |
| abstract_inverted_index.introduce | 97 |
| abstract_inverted_index.long-term | 195 |
| abstract_inverted_index.pervasive | 3 |
| abstract_inverted_index.pipelines | 208 |
| abstract_inverted_index.preserves | 169 |
| abstract_inverted_index.technique | 101 |
| abstract_inverted_index.backbones. | 27 |
| abstract_inverted_index.components | 84 |
| abstract_inverted_index.connection | 61 |
| abstract_inverted_index.discussion | 32 |
| abstract_inverted_index.increasing | 119 |
| abstract_inverted_index.integrated | 203 |
| abstract_inverted_index.pretrained | 82 |
| abstract_inverted_index.seamlessly | 202 |
| abstract_inverted_index.signifying | 165 |
| abstract_inverted_index.structures | 146 |
| abstract_inverted_index.approaches. | 114 |
| abstract_inverted_index.demonstrate | 71 |
| abstract_inverted_index.distinguish | 138 |
| abstract_inverted_index.embeddings, | 133 |
| abstract_inverted_index.forecasting | 196, 214 |
| abstract_inverted_index.initialised | 26 |
| abstract_inverted_index.lightweight | 192 |
| abstract_inverted_index.modalities. | 148 |
| abstract_inverted_index.outperforms | 186 |
| abstract_inverted_index.performance | 110 |
| abstract_inverted_index.significant | 211 |
| abstract_inverted_index.similarity, | 164 |
| abstract_inverted_index.time-series | 91 |
| abstract_inverted_index.Empirically, | 183 |
| abstract_inverted_index.Furthermore, | 198 |
| abstract_inverted_index.consistently | 185 |
| abstract_inverted_index.improvements | 212 |
| abstract_inverted_index.performance. | 197, 215 |
| abstract_inverted_index.underperform | 19 |
| abstract_inverted_index.commonalities | 177 |
| abstract_inverted_index.intrinsically | 87 |
| abstract_inverted_index.investigation | 49 |
| abstract_inverted_index.low-dimensional | 88 |
| abstract_inverted_index.representations | 152 |
| abstract_inverted_index.Pseudo-Alignment | 0 |
| abstract_inverted_index.pseudo-alignment | 40, 55, 63, 73 |
| abstract_inverted_index.state-of-the-art | 187 |
| abstract_inverted_index.\textit{\textbf{TimeSUP}}, | 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |