Ligand-Based Compound Activity Prediction via Few-Shot Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1021/acs.jcim.4c00485
Predicting the activities of new compounds against biophysical or phenotypic assays based on the known activities of one or a few existing compounds is a common goal in early stage drug discovery. This problem can be cast as a "few-shot learning" challenge, and prior studies have developed few-shot learning methods to classify compounds as active versus inactive. However, the ability to go beyond classification and rank compounds by expected affinity is more valuable. We describe Few-Shot Compound Activity Prediction (FS-CAP), a novel neural architecture trained on a large bioactivity data set to predict compound activities against an assay outside the training set, based on only the activities of a few known compounds against the same assay. Our model aggregates encodings generated from the known compounds and their activities to capture assay information and uses a separate encoder for the new compound whose activity is to be predicted. The new method provides encouraging results relative to traditional chemical-similarity-based techniques as well as other state-of-the-art few-shot learning methods in tests on a variety of ligand-based drug discovery settings and data sets. The code for FS-CAP is available at https://github.com/Rose-STL-Lab/FS-CAP.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acs.jcim.4c00485
- https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00485
- OA Status
- hybrid
- Cited By
- 7
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400183011
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400183011Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acs.jcim.4c00485Digital Object Identifier
- Title
-
Ligand-Based Compound Activity Prediction via Few-Shot LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-01Full publication date if available
- Authors
-
Peter Eckmann, Jake Anderson, Rose Yu, Michael K. GilsonList of authors in order
- Landing page
-
https://doi.org/10.1021/acs.jcim.4c00485Publisher landing page
- PDF URL
-
https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00485Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00485Direct OA link when available
- Concepts
-
Drug discovery, Computer science, Artificial intelligence, Set (abstract data type), Training set, Shot (pellet), Encoder, Similarity (geometry), Machine learning, Autoencoder, Data set, Deep learning, Computational biology, Chemistry, Bioinformatics, Biology, Organic chemistry, Operating system, Image (mathematics), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400183011 |
|---|---|
| doi | https://doi.org/10.1021/acs.jcim.4c00485 |
| ids.doi | https://doi.org/10.1021/acs.jcim.4c00485 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38950281 |
| ids.openalex | https://openalex.org/W4400183011 |
| fwci | 5.53094902 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D008024 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Ligands |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D055808 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Drug Discovery |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069550 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Machine Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008024 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Ligands |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D055808 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Drug Discovery |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000069550 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Machine Learning |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D016571 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Neural Networks, Computer |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008024 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Ligands |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D055808 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Drug Discovery |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000069550 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Machine Learning |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016571 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Neural Networks, Computer |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D008024 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Ligands |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D055808 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Drug Discovery |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000069550 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Machine Learning |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D016571 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Neural Networks, Computer |
| type | article |
| title | Ligand-Based Compound Activity Prediction via Few-Shot Learning |
| awards[0].id | https://openalex.org/G7405361371 |
| awards[0].funder_id | https://openalex.org/F4320337389 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2205093 |
| awards[0].funder_display_name | Division of Information and Intelligent Systems |
| awards[1].id | https://openalex.org/G6469066284 |
| awards[1].funder_id | https://openalex.org/F4320332359 |
| awards[1].display_name | |
| awards[1].funder_award_id | DE-SC0022255 |
| awards[1].funder_display_name | Office of Science |
| awards[2].id | https://openalex.org/G802828892 |
| awards[2].funder_id | https://openalex.org/F4320337395 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2134274 |
| awards[2].funder_display_name | Division of Emerging Frontiers in Research and Innovation |
| awards[3].id | https://openalex.org/G6595056244 |
| awards[3].funder_id | https://openalex.org/F4320337389 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2146343 |
| awards[3].funder_display_name | Division of Information and Intelligent Systems |
| awards[4].id | https://openalex.org/G738642497 |
| awards[4].funder_id | https://openalex.org/F4320337354 |
| awards[4].display_name | |
| awards[4].funder_award_id | GM061300 |
| awards[4].funder_display_name | National Institute of General Medical Sciences |
| biblio.issue | 14 |
| biblio.volume | 64 |
| biblio.last_page | 5499 |
| biblio.first_page | 5492 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9908999800682068 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10044 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9402999877929688 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Protein Structure and Dynamics |
| funders[0].id | https://openalex.org/F4320332359 |
| funders[0].ror | https://ror.org/00mmn6b08 |
| funders[0].display_name | Office of Science |
| funders[1].id | https://openalex.org/F4320333051 |
| funders[1].ror | https://ror.org/01v3fsc55 |
| funders[1].display_name | Intelligence Advanced Research Projects Activity |
| funders[2].id | https://openalex.org/F4320337354 |
| funders[2].ror | https://ror.org/04q48ey07 |
| funders[2].display_name | National Institute of General Medical Sciences |
| funders[3].id | https://openalex.org/F4320337389 |
| funders[3].ror | https://ror.org/053a2cp42 |
| funders[3].display_name | Division of Information and Intelligent Systems |
| funders[4].id | https://openalex.org/F4320337395 |
| funders[4].ror | https://ror.org/0388pet74 |
| funders[4].display_name | Division of Emerging Frontiers in Research and Innovation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C74187038 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6359049677848816 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1418791 |
| concepts[0].display_name | Drug discovery |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6326997876167297 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5467768907546997 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C177264268 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5257181525230408 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[3].display_name | Set (abstract data type) |
| concepts[4].id | https://openalex.org/C51632099 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49187779426574707 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[4].display_name | Training set |
| concepts[5].id | https://openalex.org/C2778344882 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4910612106323242 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[5].display_name | Shot (pellet) |
| concepts[6].id | https://openalex.org/C118505674 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4675178825855255 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[6].display_name | Encoder |
| concepts[7].id | https://openalex.org/C103278499 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45785272121429443 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[7].display_name | Similarity (geometry) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45759493112564087 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C101738243 |
| concepts[9].level | 3 |
| concepts[9].score | 0.431610643863678 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[9].display_name | Autoencoder |
| concepts[10].id | https://openalex.org/C58489278 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42833638191223145 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[10].display_name | Data set |
| concepts[11].id | https://openalex.org/C108583219 |
| concepts[11].level | 2 |
| concepts[11].score | 0.39120399951934814 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep learning |
| concepts[12].id | https://openalex.org/C70721500 |
| concepts[12].level | 1 |
| concepts[12].score | 0.38415876030921936 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[12].display_name | Computational biology |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.28312981128692627 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C60644358 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1876133382320404 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[14].display_name | Bioinformatics |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.13806569576263428 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C178790620 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[16].display_name | Organic chemistry |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C115961682 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[18].display_name | Image (mathematics) |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/drug-discovery |
| keywords[0].score | 0.6359049677848816 |
| keywords[0].display_name | Drug discovery |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6326997876167297 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5467768907546997 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/set |
| keywords[3].score | 0.5257181525230408 |
| keywords[3].display_name | Set (abstract data type) |
| keywords[4].id | https://openalex.org/keywords/training-set |
| keywords[4].score | 0.49187779426574707 |
| keywords[4].display_name | Training set |
| keywords[5].id | https://openalex.org/keywords/shot |
| keywords[5].score | 0.4910612106323242 |
| keywords[5].display_name | Shot (pellet) |
| keywords[6].id | https://openalex.org/keywords/encoder |
| keywords[6].score | 0.4675178825855255 |
| keywords[6].display_name | Encoder |
| keywords[7].id | https://openalex.org/keywords/similarity |
| keywords[7].score | 0.45785272121429443 |
| keywords[7].display_name | Similarity (geometry) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.45759493112564087 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/autoencoder |
| keywords[9].score | 0.431610643863678 |
| keywords[9].display_name | Autoencoder |
| keywords[10].id | https://openalex.org/keywords/data-set |
| keywords[10].score | 0.42833638191223145 |
| keywords[10].display_name | Data set |
| keywords[11].id | https://openalex.org/keywords/deep-learning |
| keywords[11].score | 0.39120399951934814 |
| keywords[11].display_name | Deep learning |
| keywords[12].id | https://openalex.org/keywords/computational-biology |
| keywords[12].score | 0.38415876030921936 |
| keywords[12].display_name | Computational biology |
| keywords[13].id | https://openalex.org/keywords/chemistry |
| keywords[13].score | 0.28312981128692627 |
| keywords[13].display_name | Chemistry |
| keywords[14].id | https://openalex.org/keywords/bioinformatics |
| keywords[14].score | 0.1876133382320404 |
| keywords[14].display_name | Bioinformatics |
| keywords[15].id | https://openalex.org/keywords/biology |
| keywords[15].score | 0.13806569576263428 |
| keywords[15].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1021/acs.jcim.4c00485 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S167262187 |
| locations[0].source.issn | 1549-9596, 1549-960X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1549-9596 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Chemical Information and Modeling |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_lineage_names | American Chemical Society |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00485 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Chemical Information and Modeling |
| locations[0].landing_page_url | https://doi.org/10.1021/acs.jcim.4c00485 |
| locations[1].id | pmid:38950281 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of chemical information and modeling |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38950281 |
| locations[2].id | pmh:oai:osti.gov:2405912 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/2405912 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11267577 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Chem Inf Model |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11267577 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5101771743 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5388-9451 |
| authorships[0].author.display_name | Peter Eckmann |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, UC San Diego, La Jolla, California 92093, United States |
| authorships[0].institutions[0].id | https://openalex.org/I36258959 |
| authorships[0].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, San Diego |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peter Eckmann |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, UC San Diego, La Jolla, California 92093, United States |
| authorships[1].author.id | https://openalex.org/A5103240768 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2547-0001 |
| authorships[1].author.display_name | Jake Anderson |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093, United States |
| authorships[1].institutions[0].id | https://openalex.org/I36258959 |
| authorships[1].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, San Diego |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jake Anderson |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093, United States |
| authorships[2].author.id | https://openalex.org/A5057778679 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8491-7937 |
| authorships[2].author.display_name | Rose Yu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, UC San Diego, La Jolla, California 92093, United States |
| authorships[2].institutions[0].id | https://openalex.org/I36258959 |
| authorships[2].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, San Diego |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rose Yu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, UC San Diego, La Jolla, California 92093, United States |
| authorships[3].author.id | https://openalex.org/A5049982297 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3375-1738 |
| authorships[3].author.display_name | Michael K. Gilson |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093, United States |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I36258959, https://openalex.org/I6750721 |
| authorships[3].affiliations[1].raw_affiliation_string | Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California 92093, United States |
| authorships[3].institutions[0].id | https://openalex.org/I36258959 |
| authorships[3].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, San Diego |
| authorships[3].institutions[1].id | https://openalex.org/I6750721 |
| authorships[3].institutions[1].ror | https://ror.org/0078xmk34 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I6750721 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of Montana |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Michael K. Gilson |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California 92093, United States, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California 92093, United States |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00485 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Ligand-Based Compound Activity Prediction via Few-Shot Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W3013693939, https://openalex.org/W2159052453, https://openalex.org/W2566616303, https://openalex.org/W3131327266, https://openalex.org/W2734887215, https://openalex.org/W4297051394, https://openalex.org/W2752972570, https://openalex.org/W2145836866, https://openalex.org/W2803255133, https://openalex.org/W2909431601 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1021/acs.jcim.4c00485 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S167262187 |
| best_oa_location.source.issn | 1549-9596, 1549-960X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1549-9596 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Chemical Information and Modeling |
| best_oa_location.source.host_organization | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_name | American Chemical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_lineage_names | American Chemical Society |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00485 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Chemical Information and Modeling |
| best_oa_location.landing_page_url | https://doi.org/10.1021/acs.jcim.4c00485 |
| primary_location.id | doi:10.1021/acs.jcim.4c00485 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S167262187 |
| primary_location.source.issn | 1549-9596, 1549-960X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1549-9596 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Chemical Information and Modeling |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_lineage_names | American Chemical Society |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00485 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Chemical Information and Modeling |
| primary_location.landing_page_url | https://doi.org/10.1021/acs.jcim.4c00485 |
| publication_date | 2024-07-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3094492244, https://openalex.org/W2937307539, https://openalex.org/W2742751028, https://openalex.org/W3047852223, https://openalex.org/W93268043, https://openalex.org/W2098530568, https://openalex.org/W2151697120, https://openalex.org/W1988037271, https://openalex.org/W2467309505, https://openalex.org/W1994886925, https://openalex.org/W3163573485, https://openalex.org/W2415742900, https://openalex.org/W2785947426, https://openalex.org/W2583907533, https://openalex.org/W2781821160, https://openalex.org/W3135935512, https://openalex.org/W3034942609, https://openalex.org/W2565684601, https://openalex.org/W3094624443, https://openalex.org/W4309656728, https://openalex.org/W3209340662, https://openalex.org/W4323338513, https://openalex.org/W3113917069, https://openalex.org/W4293257355, https://openalex.org/W2995320383, https://openalex.org/W4289884158, https://openalex.org/W2204695023, https://openalex.org/W2119512897, https://openalex.org/W2905261310, https://openalex.org/W2901476322, https://openalex.org/W2096560421, https://openalex.org/W2043398720, https://openalex.org/W3198212015, https://openalex.org/W2175130792, https://openalex.org/W2014276094, https://openalex.org/W2584452936, https://openalex.org/W3104705366, https://openalex.org/W2999905431, https://openalex.org/W3098039648, https://openalex.org/W4213069590 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 19, 24, 38, 80, 86, 108, 134, 169 |
| abstract_inverted_index.We | 73 |
| abstract_inverted_index.an | 96 |
| abstract_inverted_index.as | 37, 53, 158, 160 |
| abstract_inverted_index.at | 185 |
| abstract_inverted_index.be | 35, 145 |
| abstract_inverted_index.by | 67 |
| abstract_inverted_index.go | 61 |
| abstract_inverted_index.in | 27, 166 |
| abstract_inverted_index.is | 23, 70, 143, 183 |
| abstract_inverted_index.of | 3, 16, 107, 171 |
| abstract_inverted_index.on | 12, 85, 103, 168 |
| abstract_inverted_index.or | 8, 18 |
| abstract_inverted_index.to | 50, 60, 91, 128, 144, 154 |
| abstract_inverted_index.Our | 116 |
| abstract_inverted_index.The | 147, 179 |
| abstract_inverted_index.and | 42, 64, 125, 132, 176 |
| abstract_inverted_index.can | 34 |
| abstract_inverted_index.few | 20, 109 |
| abstract_inverted_index.for | 137, 181 |
| abstract_inverted_index.new | 4, 139, 148 |
| abstract_inverted_index.one | 17 |
| abstract_inverted_index.set | 90 |
| abstract_inverted_index.the | 1, 13, 58, 99, 105, 113, 122, 138 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.cast | 36 |
| abstract_inverted_index.code | 180 |
| abstract_inverted_index.data | 89, 177 |
| abstract_inverted_index.drug | 30, 173 |
| abstract_inverted_index.from | 121 |
| abstract_inverted_index.goal | 26 |
| abstract_inverted_index.have | 45 |
| abstract_inverted_index.more | 71 |
| abstract_inverted_index.only | 104 |
| abstract_inverted_index.rank | 65 |
| abstract_inverted_index.same | 114 |
| abstract_inverted_index.set, | 101 |
| abstract_inverted_index.uses | 133 |
| abstract_inverted_index.well | 159 |
| abstract_inverted_index.assay | 97, 130 |
| abstract_inverted_index.based | 11, 102 |
| abstract_inverted_index.early | 28 |
| abstract_inverted_index.known | 14, 110, 123 |
| abstract_inverted_index.large | 87 |
| abstract_inverted_index.model | 117 |
| abstract_inverted_index.novel | 81 |
| abstract_inverted_index.other | 161 |
| abstract_inverted_index.prior | 43 |
| abstract_inverted_index.sets. | 178 |
| abstract_inverted_index.stage | 29 |
| abstract_inverted_index.tests | 167 |
| abstract_inverted_index.their | 126 |
| abstract_inverted_index.whose | 141 |
| abstract_inverted_index.FS-CAP | 182 |
| abstract_inverted_index.active | 54 |
| abstract_inverted_index.assay. | 115 |
| abstract_inverted_index.assays | 10 |
| abstract_inverted_index.beyond | 62 |
| abstract_inverted_index.common | 25 |
| abstract_inverted_index.method | 149 |
| abstract_inverted_index.neural | 82 |
| abstract_inverted_index.versus | 55 |
| abstract_inverted_index.ability | 59 |
| abstract_inverted_index.against | 6, 95, 112 |
| abstract_inverted_index.capture | 129 |
| abstract_inverted_index.encoder | 136 |
| abstract_inverted_index.methods | 49, 165 |
| abstract_inverted_index.outside | 98 |
| abstract_inverted_index.predict | 92 |
| abstract_inverted_index.problem | 33 |
| abstract_inverted_index.results | 152 |
| abstract_inverted_index.studies | 44 |
| abstract_inverted_index.trained | 84 |
| abstract_inverted_index.variety | 170 |
| abstract_inverted_index.Activity | 77 |
| abstract_inverted_index.Compound | 76 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.activity | 142 |
| abstract_inverted_index.affinity | 69 |
| abstract_inverted_index.classify | 51 |
| abstract_inverted_index.compound | 93, 140 |
| abstract_inverted_index.describe | 74 |
| abstract_inverted_index.existing | 21 |
| abstract_inverted_index.expected | 68 |
| abstract_inverted_index.few-shot | 47, 163 |
| abstract_inverted_index.learning | 48, 164 |
| abstract_inverted_index.provides | 150 |
| abstract_inverted_index.relative | 153 |
| abstract_inverted_index.separate | 135 |
| abstract_inverted_index.settings | 175 |
| abstract_inverted_index.training | 100 |
| abstract_inverted_index."few-shot | 39 |
| abstract_inverted_index.(FS-CAP), | 79 |
| abstract_inverted_index.available | 184 |
| abstract_inverted_index.compounds | 5, 22, 52, 66, 111, 124 |
| abstract_inverted_index.developed | 46 |
| abstract_inverted_index.discovery | 174 |
| abstract_inverted_index.encodings | 119 |
| abstract_inverted_index.generated | 120 |
| abstract_inverted_index.inactive. | 56 |
| abstract_inverted_index.learning" | 40 |
| abstract_inverted_index.valuable. | 72 |
| abstract_inverted_index.Predicting | 0 |
| abstract_inverted_index.activities | 2, 15, 94, 106, 127 |
| abstract_inverted_index.aggregates | 118 |
| abstract_inverted_index.challenge, | 41 |
| abstract_inverted_index.discovery. | 31 |
| abstract_inverted_index.phenotypic | 9 |
| abstract_inverted_index.predicted. | 146 |
| abstract_inverted_index.techniques | 157 |
| abstract_inverted_index.<i>Few-Shot | 75 |
| abstract_inverted_index.bioactivity | 88 |
| abstract_inverted_index.biophysical | 7 |
| abstract_inverted_index.encouraging | 151 |
| abstract_inverted_index.information | 131 |
| abstract_inverted_index.traditional | 155 |
| abstract_inverted_index.architecture | 83 |
| abstract_inverted_index.ligand-based | 172 |
| abstract_inverted_index.Prediction</i> | 78 |
| abstract_inverted_index.classification | 63 |
| abstract_inverted_index.state-of-the-art | 162 |
| abstract_inverted_index.chemical-similarity-based | 156 |
| abstract_inverted_index.https://github.com/Rose-STL-Lab/FS-CAP. | 186 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5101771743, https://openalex.org/A5057778679, https://openalex.org/A5103240768, https://openalex.org/A5049982297 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I36258959, https://openalex.org/I6750721 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.93077793 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |