Lightning Strike Location Identification Based on 3D Weather Radar Data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3389/fenvs.2021.714067
Lightning is an instantaneous, intense, and convective weather phenomenon that can produce great destructive power and easily cause serious economic losses and casualties. It always occurs in convective storms with small spatial scales and short life cycles. Weather radar is one of the best operational instruments that can monitor the detailed 3D structures of convective storms at high spatial and temporal resolutions. Thus, extracting the features related to lightning automatically from 3D weather radar data to identify lightning strike locations would significantly benefit future lightning predictions. This article makes a bold attempt to apply three-dimensional radar data to identify lightning strike locations, thereby laying the foundation for the subsequent accurate and real-time prediction of lightning locations. First, that issue is transformed into a binary classification problem. Then, a suitable dataset for the recognition of lightning strike locations based on 3D radar data is constructed for system training and evaluation purposes. Furthermore, the machine learning methods of a convolutional neural network, logistic regression, a random forest, and k-nearest neighbors are employed to carry out experiments. The results show that the convolutional neural network has the best performance in identifying lightning strike locations. This technique is followed by the random forest and k-nearest neighbors, and the logistic regression produces the worst manifestation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fenvs.2021.714067
- https://www.frontiersin.org/articles/10.3389/fenvs.2021.714067/pdf
- OA Status
- gold
- Cited By
- 11
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3187878061
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3187878061Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fenvs.2021.714067Digital Object Identifier
- Title
-
Lightning Strike Location Identification Based on 3D Weather Radar DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-04Full publication date if available
- Authors
-
Mingyue Lu, Yadong Zhang, Zaiyang Ma, Manzhu Yu, Min Chen, Jianqin Zheng, Menglong WangList of authors in order
- Landing page
-
https://doi.org/10.3389/fenvs.2021.714067Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fenvs.2021.714067/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fenvs.2021.714067/pdfDirect OA link when available
- Concepts
-
Lightning (connector), Radar, Lightning detection, Convective storm detection, Random forest, Meteorology, Lightning strike, Identification (biology), Weather radar, Storm, Convolutional neural network, Computer science, Remote sensing, Artificial neural network, Environmental science, Artificial intelligence, Geology, Thunderstorm, Geography, Power (physics), Telecommunications, Physics, Biology, Quantum mechanics, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 5, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3187878061 |
|---|---|
| doi | https://doi.org/10.3389/fenvs.2021.714067 |
| ids.doi | https://doi.org/10.3389/fenvs.2021.714067 |
| ids.mag | 3187878061 |
| ids.openalex | https://openalex.org/W3187878061 |
| fwci | 1.07157768 |
| type | article |
| title | Lightning Strike Location Identification Based on 3D Weather Radar Data |
| biblio.issue | |
| biblio.volume | 9 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10555 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9926999807357788 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Fire effects on ecosystems |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9890000224113464 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T10466 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9872999787330627 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Meteorological Phenomena and Simulations |
| is_xpac | False |
| apc_list.value | 2490 |
| apc_list.currency | USD |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2490 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C69398868 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8480970859527588 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q129052 |
| concepts[0].display_name | Lightning (connector) |
| concepts[1].id | https://openalex.org/C554190296 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7009128332138062 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[1].display_name | Radar |
| concepts[2].id | https://openalex.org/C2780500098 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6545540690422058 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3050846 |
| concepts[2].display_name | Lightning detection |
| concepts[3].id | https://openalex.org/C192932206 |
| concepts[3].level | 3 |
| concepts[3].score | 0.648287832736969 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q16951299 |
| concepts[3].display_name | Convective storm detection |
| concepts[4].id | https://openalex.org/C169258074 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6221300363540649 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[4].display_name | Random forest |
| concepts[5].id | https://openalex.org/C153294291 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6148480176925659 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[5].display_name | Meteorology |
| concepts[6].id | https://openalex.org/C182236062 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5925949811935425 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q15120872 |
| concepts[6].display_name | Lightning strike |
| concepts[7].id | https://openalex.org/C116834253 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5812227725982666 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[7].display_name | Identification (biology) |
| concepts[8].id | https://openalex.org/C92237259 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5497536659240723 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q863343 |
| concepts[8].display_name | Weather radar |
| concepts[9].id | https://openalex.org/C105306849 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5105410814285278 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q81054 |
| concepts[9].display_name | Storm |
| concepts[10].id | https://openalex.org/C81363708 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5064352750778198 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[10].display_name | Convolutional neural network |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.49399787187576294 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C62649853 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4374857544898987 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[12].display_name | Remote sensing |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.42780381441116333 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C39432304 |
| concepts[14].level | 0 |
| concepts[14].score | 0.36795711517333984 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[14].display_name | Environmental science |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2999894618988037 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C127313418 |
| concepts[16].level | 0 |
| concepts[16].score | 0.27928781509399414 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[16].display_name | Geology |
| concepts[17].id | https://openalex.org/C80316258 |
| concepts[17].level | 2 |
| concepts[17].score | 0.20916897058486938 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2857578 |
| concepts[17].display_name | Thunderstorm |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.1840047836303711 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C163258240 |
| concepts[19].level | 2 |
| concepts[19].score | 0.17119768261909485 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[19].display_name | Power (physics) |
| concepts[20].id | https://openalex.org/C76155785 |
| concepts[20].level | 1 |
| concepts[20].score | 0.10780426859855652 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[20].display_name | Telecommunications |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C86803240 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[22].display_name | Biology |
| concepts[23].id | https://openalex.org/C62520636 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[23].display_name | Quantum mechanics |
| concepts[24].id | https://openalex.org/C59822182 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[24].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/lightning |
| keywords[0].score | 0.8480970859527588 |
| keywords[0].display_name | Lightning (connector) |
| keywords[1].id | https://openalex.org/keywords/radar |
| keywords[1].score | 0.7009128332138062 |
| keywords[1].display_name | Radar |
| keywords[2].id | https://openalex.org/keywords/lightning-detection |
| keywords[2].score | 0.6545540690422058 |
| keywords[2].display_name | Lightning detection |
| keywords[3].id | https://openalex.org/keywords/convective-storm-detection |
| keywords[3].score | 0.648287832736969 |
| keywords[3].display_name | Convective storm detection |
| keywords[4].id | https://openalex.org/keywords/random-forest |
| keywords[4].score | 0.6221300363540649 |
| keywords[4].display_name | Random forest |
| keywords[5].id | https://openalex.org/keywords/meteorology |
| keywords[5].score | 0.6148480176925659 |
| keywords[5].display_name | Meteorology |
| keywords[6].id | https://openalex.org/keywords/lightning-strike |
| keywords[6].score | 0.5925949811935425 |
| keywords[6].display_name | Lightning strike |
| keywords[7].id | https://openalex.org/keywords/identification |
| keywords[7].score | 0.5812227725982666 |
| keywords[7].display_name | Identification (biology) |
| keywords[8].id | https://openalex.org/keywords/weather-radar |
| keywords[8].score | 0.5497536659240723 |
| keywords[8].display_name | Weather radar |
| keywords[9].id | https://openalex.org/keywords/storm |
| keywords[9].score | 0.5105410814285278 |
| keywords[9].display_name | Storm |
| keywords[10].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[10].score | 0.5064352750778198 |
| keywords[10].display_name | Convolutional neural network |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.49399787187576294 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/remote-sensing |
| keywords[12].score | 0.4374857544898987 |
| keywords[12].display_name | Remote sensing |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.42780381441116333 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/environmental-science |
| keywords[14].score | 0.36795711517333984 |
| keywords[14].display_name | Environmental science |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.2999894618988037 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/geology |
| keywords[16].score | 0.27928781509399414 |
| keywords[16].display_name | Geology |
| keywords[17].id | https://openalex.org/keywords/thunderstorm |
| keywords[17].score | 0.20916897058486938 |
| keywords[17].display_name | Thunderstorm |
| keywords[18].id | https://openalex.org/keywords/geography |
| keywords[18].score | 0.1840047836303711 |
| keywords[18].display_name | Geography |
| keywords[19].id | https://openalex.org/keywords/power |
| keywords[19].score | 0.17119768261909485 |
| keywords[19].display_name | Power (physics) |
| keywords[20].id | https://openalex.org/keywords/telecommunications |
| keywords[20].score | 0.10780426859855652 |
| keywords[20].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3389/fenvs.2021.714067 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2596204836 |
| locations[0].source.issn | 2296-665X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-665X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Environmental Science |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fenvs.2021.714067/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Environmental Science |
| locations[0].landing_page_url | https://doi.org/10.3389/fenvs.2021.714067 |
| locations[1].id | pmh:oai:doaj.org/article:efbb6a8d5aaa4a8aaef066e83a5c1f94 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Environmental Science, Vol 9 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/efbb6a8d5aaa4a8aaef066e83a5c1f94 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5012654886 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-7555-4040 |
| authorships[0].author.display_name | Mingyue Lu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[0].affiliations[0].raw_affiliation_string | Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China |
| authorships[0].institutions[0].id | https://openalex.org/I200845125 |
| authorships[0].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mingyue Lu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China |
| authorships[1].author.id | https://openalex.org/A5100330163 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7113-1567 |
| authorships[1].author.display_name | Yadong Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[1].affiliations[0].raw_affiliation_string | Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China |
| authorships[1].institutions[0].id | https://openalex.org/I200845125 |
| authorships[1].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yadong Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China |
| authorships[2].author.id | https://openalex.org/A5089425970 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3353-4060 |
| authorships[2].author.display_name | Zaiyang Ma |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210141657 |
| authorships[2].affiliations[0].raw_affiliation_string | Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210141657 |
| authorships[2].affiliations[1].raw_affiliation_string | State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I152031979 |
| authorships[2].affiliations[2].raw_affiliation_string | Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210141657 |
| authorships[2].institutions[0].ror | https://ror.org/045yewh40 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I152031979, https://openalex.org/I4210141657 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application |
| authorships[2].institutions[1].id | https://openalex.org/I152031979 |
| authorships[2].institutions[1].ror | https://ror.org/036trcv74 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I152031979 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Nanjing Normal University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zaiyang Ma |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China, Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing, China, State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China |
| authorships[3].author.id | https://openalex.org/A5073577524 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6769-7517 |
| authorships[3].author.display_name | Manzhu Yu |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I130769515, https://openalex.org/I4179309 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Geography, The Pennsylvania State University, University Park, University Park, IL, United States |
| authorships[3].institutions[0].id | https://openalex.org/I4179309 |
| authorships[3].institutions[0].ror | https://ror.org/04ngpga37 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4179309 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Park University |
| authorships[3].institutions[1].id | https://openalex.org/I130769515 |
| authorships[3].institutions[1].ror | https://ror.org/04p491231 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I130769515 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Pennsylvania State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Manzhu Yu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Geography, The Pennsylvania State University, University Park, University Park, IL, United States |
| authorships[4].author.id | https://openalex.org/A5062581654 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Min Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210141657 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I152031979 |
| authorships[4].affiliations[1].raw_affiliation_string | Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing, China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I4210141657 |
| authorships[4].affiliations[2].raw_affiliation_string | Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210141657 |
| authorships[4].institutions[0].ror | https://ror.org/045yewh40 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I152031979, https://openalex.org/I4210141657 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application |
| authorships[4].institutions[1].id | https://openalex.org/I152031979 |
| authorships[4].institutions[1].ror | https://ror.org/036trcv74 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I152031979 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Nanjing Normal University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Min Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China, Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing, China, State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China |
| authorships[5].author.id | https://openalex.org/A5043860323 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8815-3877 |
| authorships[5].author.display_name | Jianqin Zheng |
| authorships[5].affiliations[0].raw_affiliation_string | Wenzhou Meteorological Bureau, Wenzhou, China |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jianqin Zheng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Wenzhou Meteorological Bureau, Wenzhou, China |
| authorships[6].author.id | https://openalex.org/A5014658618 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7760-7156 |
| authorships[6].author.display_name | Menglong Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[6].affiliations[0].raw_affiliation_string | Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China |
| authorships[6].institutions[0].id | https://openalex.org/I200845125 |
| authorships[6].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Menglong Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fenvs.2021.714067/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Lightning Strike Location Identification Based on 3D Weather Radar Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10555 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9926999807357788 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Fire effects on ecosystems |
| related_works | https://openalex.org/W2908563250, https://openalex.org/W806495504, https://openalex.org/W1993595365, https://openalex.org/W22494098, https://openalex.org/W2379875791, https://openalex.org/W1487629192, https://openalex.org/W4290992841, https://openalex.org/W2350288218, https://openalex.org/W2182723125, https://openalex.org/W3021815550 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fenvs.2021.714067 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2596204836 |
| best_oa_location.source.issn | 2296-665X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-665X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Environmental Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fenvs.2021.714067/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Environmental Science |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fenvs.2021.714067 |
| primary_location.id | doi:10.3389/fenvs.2021.714067 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2596204836 |
| primary_location.source.issn | 2296-665X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-665X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Environmental Science |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fenvs.2021.714067/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Environmental Science |
| primary_location.landing_page_url | https://doi.org/10.3389/fenvs.2021.714067 |
| publication_date | 2021-08-04 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2102641689, https://openalex.org/W2161741939, https://openalex.org/W2785720868, https://openalex.org/W2130695501, https://openalex.org/W2151734541, https://openalex.org/W2980421096, https://openalex.org/W3087067663, https://openalex.org/W2203202647, https://openalex.org/W2989173953, https://openalex.org/W2966003317, https://openalex.org/W3011471605, https://openalex.org/W964460774, https://openalex.org/W6774745233, https://openalex.org/W3097566126, https://openalex.org/W6781298027, https://openalex.org/W6610017368, https://openalex.org/W3211099110, https://openalex.org/W2593409984, https://openalex.org/W2905526800, https://openalex.org/W2918408501, https://openalex.org/W2094857149, https://openalex.org/W2462866366, https://openalex.org/W2984597037, https://openalex.org/W3044184294, https://openalex.org/W3047969633, https://openalex.org/W2155632266, https://openalex.org/W1966716734, https://openalex.org/W2903942159, https://openalex.org/W3000415744, https://openalex.org/W1976193075, https://openalex.org/W2909177355, https://openalex.org/W2964327783, https://openalex.org/W6759027203, https://openalex.org/W3012459813, https://openalex.org/W3085563388, https://openalex.org/W3120003026, https://openalex.org/W1987141568, https://openalex.org/W6790333442, https://openalex.org/W3016496098, https://openalex.org/W3111095757, https://openalex.org/W3011292897, https://openalex.org/W3126788322, https://openalex.org/W2811106439, https://openalex.org/W3099847871, https://openalex.org/W3128191616, https://openalex.org/W273955616, https://openalex.org/W2913756508, https://openalex.org/W1997544404 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 89, 122, 127, 156, 162 |
| abstract_inverted_index.3D | 51, 71, 139 |
| abstract_inverted_index.It | 23 |
| abstract_inverted_index.an | 2 |
| abstract_inverted_index.at | 56 |
| abstract_inverted_index.by | 195 |
| abstract_inverted_index.in | 26, 186 |
| abstract_inverted_index.is | 1, 39, 119, 142, 193 |
| abstract_inverted_index.of | 41, 53, 113, 133, 155 |
| abstract_inverted_index.on | 138 |
| abstract_inverted_index.to | 67, 75, 92, 97, 170 |
| abstract_inverted_index.The | 174 |
| abstract_inverted_index.and | 5, 15, 21, 33, 59, 110, 147, 165, 199, 202 |
| abstract_inverted_index.are | 168 |
| abstract_inverted_index.can | 10, 47 |
| abstract_inverted_index.for | 106, 130, 144 |
| abstract_inverted_index.has | 182 |
| abstract_inverted_index.one | 40 |
| abstract_inverted_index.out | 172 |
| abstract_inverted_index.the | 42, 49, 64, 104, 107, 131, 151, 178, 183, 196, 203, 207 |
| abstract_inverted_index.This | 86, 191 |
| abstract_inverted_index.best | 43, 184 |
| abstract_inverted_index.bold | 90 |
| abstract_inverted_index.data | 74, 96, 141 |
| abstract_inverted_index.from | 70 |
| abstract_inverted_index.high | 57 |
| abstract_inverted_index.into | 121 |
| abstract_inverted_index.life | 35 |
| abstract_inverted_index.show | 176 |
| abstract_inverted_index.that | 9, 46, 117, 177 |
| abstract_inverted_index.with | 29 |
| abstract_inverted_index.Then, | 126 |
| abstract_inverted_index.Thus, | 62 |
| abstract_inverted_index.apply | 93 |
| abstract_inverted_index.based | 137 |
| abstract_inverted_index.carry | 171 |
| abstract_inverted_index.cause | 17 |
| abstract_inverted_index.great | 12 |
| abstract_inverted_index.issue | 118 |
| abstract_inverted_index.makes | 88 |
| abstract_inverted_index.power | 14 |
| abstract_inverted_index.radar | 38, 73, 95, 140 |
| abstract_inverted_index.short | 34 |
| abstract_inverted_index.small | 30 |
| abstract_inverted_index.worst | 208 |
| abstract_inverted_index.would | 80 |
| abstract_inverted_index.First, | 116 |
| abstract_inverted_index.always | 24 |
| abstract_inverted_index.binary | 123 |
| abstract_inverted_index.easily | 16 |
| abstract_inverted_index.forest | 198 |
| abstract_inverted_index.future | 83 |
| abstract_inverted_index.laying | 103 |
| abstract_inverted_index.losses | 20 |
| abstract_inverted_index.neural | 158, 180 |
| abstract_inverted_index.occurs | 25 |
| abstract_inverted_index.random | 163, 197 |
| abstract_inverted_index.scales | 32 |
| abstract_inverted_index.storms | 28, 55 |
| abstract_inverted_index.strike | 78, 100, 135, 189 |
| abstract_inverted_index.system | 145 |
| abstract_inverted_index.Weather | 37 |
| abstract_inverted_index.article | 87 |
| abstract_inverted_index.attempt | 91 |
| abstract_inverted_index.benefit | 82 |
| abstract_inverted_index.cycles. | 36 |
| abstract_inverted_index.dataset | 129 |
| abstract_inverted_index.forest, | 164 |
| abstract_inverted_index.machine | 152 |
| abstract_inverted_index.methods | 154 |
| abstract_inverted_index.monitor | 48 |
| abstract_inverted_index.network | 181 |
| abstract_inverted_index.produce | 11 |
| abstract_inverted_index.related | 66 |
| abstract_inverted_index.results | 175 |
| abstract_inverted_index.serious | 18 |
| abstract_inverted_index.spatial | 31, 58 |
| abstract_inverted_index.thereby | 102 |
| abstract_inverted_index.weather | 7, 72 |
| abstract_inverted_index.accurate | 109 |
| abstract_inverted_index.detailed | 50 |
| abstract_inverted_index.economic | 19 |
| abstract_inverted_index.employed | 169 |
| abstract_inverted_index.features | 65 |
| abstract_inverted_index.followed | 194 |
| abstract_inverted_index.identify | 76, 98 |
| abstract_inverted_index.intense, | 4 |
| abstract_inverted_index.learning | 153 |
| abstract_inverted_index.logistic | 160, 204 |
| abstract_inverted_index.network, | 159 |
| abstract_inverted_index.problem. | 125 |
| abstract_inverted_index.produces | 206 |
| abstract_inverted_index.suitable | 128 |
| abstract_inverted_index.temporal | 60 |
| abstract_inverted_index.training | 146 |
| abstract_inverted_index.Lightning | 0 |
| abstract_inverted_index.k-nearest | 166, 200 |
| abstract_inverted_index.lightning | 68, 77, 84, 99, 114, 134, 188 |
| abstract_inverted_index.locations | 79, 136 |
| abstract_inverted_index.neighbors | 167 |
| abstract_inverted_index.purposes. | 149 |
| abstract_inverted_index.real-time | 111 |
| abstract_inverted_index.technique | 192 |
| abstract_inverted_index.convective | 6, 27, 54 |
| abstract_inverted_index.evaluation | 148 |
| abstract_inverted_index.extracting | 63 |
| abstract_inverted_index.foundation | 105 |
| abstract_inverted_index.locations, | 101 |
| abstract_inverted_index.locations. | 115, 190 |
| abstract_inverted_index.neighbors, | 201 |
| abstract_inverted_index.phenomenon | 8 |
| abstract_inverted_index.prediction | 112 |
| abstract_inverted_index.regression | 205 |
| abstract_inverted_index.structures | 52 |
| abstract_inverted_index.subsequent | 108 |
| abstract_inverted_index.casualties. | 22 |
| abstract_inverted_index.constructed | 143 |
| abstract_inverted_index.destructive | 13 |
| abstract_inverted_index.identifying | 187 |
| abstract_inverted_index.instruments | 45 |
| abstract_inverted_index.operational | 44 |
| abstract_inverted_index.performance | 185 |
| abstract_inverted_index.recognition | 132 |
| abstract_inverted_index.regression, | 161 |
| abstract_inverted_index.transformed | 120 |
| abstract_inverted_index.Furthermore, | 150 |
| abstract_inverted_index.experiments. | 173 |
| abstract_inverted_index.predictions. | 85 |
| abstract_inverted_index.resolutions. | 61 |
| abstract_inverted_index.automatically | 69 |
| abstract_inverted_index.convolutional | 157, 179 |
| abstract_inverted_index.significantly | 81 |
| abstract_inverted_index.classification | 124 |
| abstract_inverted_index.instantaneous, | 3 |
| abstract_inverted_index.manifestation. | 209 |
| abstract_inverted_index.three-dimensional | 94 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5089425970 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I152031979, https://openalex.org/I4210141657 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.75061194 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |