LightRoseTTA: High-efficient and Accurate Protein Structure Prediction Using an Ultra-Lightweight Deep Graph Model Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1101/2023.11.20.566676
Accurately predicting protein structure, from amino acid sequences to three-dimensional structures, is of great significance in biological research. To tackle this issue, a representative deep big model, RoseTTAFold, has been proposed with promising success. Here, we report an ultra-lightweight deep graph network , named LightRoseTTA , to achieve accurate and high-efficient prediction for proteins. Notably, three highlights are possessed by our LightRoseTTA: (i) high-accurate structure prediction for proteins, being competitive with RoseTTAFold on multiple popular datasets including CASP14 and CAMEO; (ii) high-e ffi cient training and inference with an ultra-lightweight model, costing only one week on one single general NVIDIA 3090 GPU for model-training (vs 30 days on 8 high-speed NVIDIA V100 GPUs for RoseTTAFold) and containing only 1 . 4M parameters (vs 130M in RoseTTAFold); (iii) low dependency on multi-sequence alignments (MSA, widely-used homologous information), achieving the best performance on three MSA-insu ffi cient datasets: Orphan, De novo, and Orphan25 . Besides, our LightRoseTTA is transferable from general proteins to antibody data, as verified in our experiments. We visualize some case studies to demonstrate the high-quality prediction, and provide some insights on how the structure predictions facilitate the understanding of biological functions. We further make a discussion on the time and resource costs of LightRoseTTA and RoseTTAFold, and demonstrate the feasibility of lightweight models for protein structure prediction, which may be crucial in the resource-limited research for universities and academy institutions. We release our code and model to speed biological research .
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2023.11.20.566676
- https://www.biorxiv.org/content/biorxiv/early/2023/11/21/2023.11.20.566676.full.pdf
- OA Status
- green
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388850670
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388850670Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2023.11.20.566676Digital Object Identifier
- Title
-
LightRoseTTA: High-efficient and Accurate Protein Structure Prediction Using an Ultra-Lightweight Deep Graph ModelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-21Full publication date if available
- Authors
-
Xudong Wang, Tong Zhang, Guangbu Liu, Zhen Cui, Zhiyong Zeng, Long Cheng, Wenming Zheng, Jian YangList of authors in order
- Landing page
-
https://doi.org/10.1101/2023.11.20.566676Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2023/11/21/2023.11.20.566676.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2023/11/21/2023.11.20.566676.full.pdfDirect OA link when available
- Concepts
-
Computer science, Inference, Protein structure prediction, Graph, Artificial intelligence, Deep learning, Machine learning, Data mining, Protein structure, Theoretical computer science, Nuclear magnetic resonance, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388850670 |
|---|---|
| doi | https://doi.org/10.1101/2023.11.20.566676 |
| ids.doi | https://doi.org/10.1101/2023.11.20.566676 |
| ids.openalex | https://openalex.org/W4388850670 |
| fwci | 0.0 |
| type | preprint |
| title | LightRoseTTA: High-efficient and Accurate Protein Structure Prediction Using an Ultra-Lightweight Deep Graph Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10044 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Protein Structure and Dynamics |
| topics[1].id | https://openalex.org/T12254 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Machine Learning in Bioinformatics |
| topics[2].id | https://openalex.org/T10521 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9983000159263611 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | RNA and protein synthesis mechanisms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7389534115791321 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6441534161567688 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C18051474 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5841078758239746 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q899656 |
| concepts[2].display_name | Protein structure prediction |
| concepts[3].id | https://openalex.org/C132525143 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4604649245738983 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[3].display_name | Graph |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44035810232162476 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4368005692958832 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41773396730422974 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3470984697341919 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C47701112 |
| concepts[8].level | 2 |
| concepts[8].score | 0.2909960150718689 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q735188 |
| concepts[8].display_name | Protein structure |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2551734149456024 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C46141821 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q209402 |
| concepts[10].display_name | Nuclear magnetic resonance |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7389534115791321 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6441534161567688 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/protein-structure-prediction |
| keywords[2].score | 0.5841078758239746 |
| keywords[2].display_name | Protein structure prediction |
| keywords[3].id | https://openalex.org/keywords/graph |
| keywords[3].score | 0.4604649245738983 |
| keywords[3].display_name | Graph |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.44035810232162476 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.4368005692958832 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.41773396730422974 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3470984697341919 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/protein-structure |
| keywords[8].score | 0.2909960150718689 |
| keywords[8].display_name | Protein structure |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.2551734149456024 |
| keywords[9].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.1101/2023.11.20.566676 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/11/21/2023.11.20.566676.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2023.11.20.566676 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5111077643 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xudong Wang |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I12509574 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science nd Engineering, Nnjing University of Science nd Technology, No. 200, Xiolingwei Street, Nnjing, 210094, Jingsu Province, Chin |
| authorships[0].institutions[0].id | https://openalex.org/I12509574 |
| authorships[0].institutions[0].ror | https://ror.org/03dr26375 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I12509574 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | Jinwen University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xudong Wang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Computer Science nd Engineering, Nnjing University of Science nd Technology, No. 200, Xiolingwei Street, Nnjing, 210094, Jingsu Province, Chin |
| authorships[1].author.id | https://openalex.org/A5048187697 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4964-3026 |
| authorships[1].author.display_name | Tong Zhang |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I12509574 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science nd Engineering, Nnjing University of Science nd Technology, No. 200, Xiolingwei Street, Nnjing, 210094, Jingsu Province, Chin |
| authorships[1].institutions[0].id | https://openalex.org/I12509574 |
| authorships[1].institutions[0].ror | https://ror.org/03dr26375 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I12509574 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | Jinwen University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tong Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science nd Engineering, Nnjing University of Science nd Technology, No. 200, Xiolingwei Street, Nnjing, 210094, Jingsu Province, Chin |
| authorships[2].author.id | https://openalex.org/A5092236321 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-6128-1908 |
| authorships[2].author.display_name | Guangbu Liu |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I12509574 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science nd Engineering, Nnjing University of Science nd Technology, No. 200, Xiolingwei Street, Nnjing, 210094, Jingsu Province, Chin |
| authorships[2].institutions[0].id | https://openalex.org/I12509574 |
| authorships[2].institutions[0].ror | https://ror.org/03dr26375 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I12509574 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | Jinwen University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guangbu Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science nd Engineering, Nnjing University of Science nd Technology, No. 200, Xiolingwei Street, Nnjing, 210094, Jingsu Province, Chin |
| authorships[3].author.id | https://openalex.org/A5001104033 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4119-8108 |
| authorships[3].author.display_name | Zhen Cui |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I12509574 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science nd Engineering, Nnjing University of Science nd Technology, No. 200, Xiolingwei Street, Nnjing, 210094, Jingsu Province, Chin |
| authorships[3].institutions[0].id | https://openalex.org/I12509574 |
| authorships[3].institutions[0].ror | https://ror.org/03dr26375 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I12509574 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | Jinwen University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhen Cui |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science nd Engineering, Nnjing University of Science nd Technology, No. 200, Xiolingwei Street, Nnjing, 210094, Jingsu Province, Chin |
| authorships[4].author.id | https://openalex.org/A5101856202 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7551-7456 |
| authorships[4].author.display_name | Zhiyong Zeng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Automation, Nanjing University of Science and Technology, No. 200, Xiaolingwei Street, Nanjing, 210094, Jiangsu Province, China |
| authorships[4].institutions[0].id | https://openalex.org/I36399199 |
| authorships[4].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhiyong Zeng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Automation, Nanjing University of Science and Technology, No. 200, Xiaolingwei Street, Nanjing, 210094, Jiangsu Province, China |
| authorships[5].author.id | https://openalex.org/A5100774161 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0578-6244 |
| authorships[5].author.display_name | Long Cheng |
| authorships[5].countries | SG |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I21419654 |
| authorships[5].affiliations[0].raw_affiliation_string | Shool of Computer Engineering, Nanyang Tehnologial University, No. 50, Nanyang Avenue, 639798, Singapore |
| authorships[5].institutions[0].id | https://openalex.org/I21419654 |
| authorships[5].institutions[0].ror | https://ror.org/04af7ga89 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I1280293394, https://openalex.org/I21419654 |
| authorships[5].institutions[0].country_code | SG |
| authorships[5].institutions[0].display_name | Nanyang Polytechnic |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Cheng Long |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Shool of Computer Engineering, Nanyang Tehnologial University, No. 50, Nanyang Avenue, 639798, Singapore |
| authorships[6].author.id | https://openalex.org/A5029771864 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7764-5179 |
| authorships[6].author.display_name | Wenming Zheng |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Biological Science & Meical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, Jiangsu Province, China |
| authorships[6].institutions[0].id | https://openalex.org/I76569877 |
| authorships[6].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Southeast University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wenming Zheng |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Biological Science & Meical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, Jiangsu Province, China |
| authorships[7].author.id | https://openalex.org/A5100726984 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4800-832X |
| authorships[7].author.display_name | Jian Yang |
| authorships[7].countries | TW |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I12509574 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Computer Science nd Engineering, Nnjing University of Science nd Technology, No. 200, Xiolingwei Street, Nnjing, 210094, Jingsu Province, Chin |
| authorships[7].institutions[0].id | https://openalex.org/I12509574 |
| authorships[7].institutions[0].ror | https://ror.org/03dr26375 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I12509574 |
| authorships[7].institutions[0].country_code | TW |
| authorships[7].institutions[0].display_name | Jinwen University of Science and Technology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Jian Yang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Computer Science nd Engineering, Nnjing University of Science nd Technology, No. 200, Xiolingwei Street, Nnjing, 210094, Jingsu Province, Chin |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2023/11/21/2023.11.20.566676.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LightRoseTTA: High-efficient and Accurate Protein Structure Prediction Using an Ultra-Lightweight Deep Graph Model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10044 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Protein Structure and Dynamics |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2055243143, https://openalex.org/W2611989081, https://openalex.org/W4230611425, https://openalex.org/W2731899572, https://openalex.org/W4304166257, https://openalex.org/W4294635752, https://openalex.org/W4383066092, https://openalex.org/W3215138031, https://openalex.org/W4380075502 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2023.11.20.566676 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/11/21/2023.11.20.566676.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2023.11.20.566676 |
| primary_location.id | doi:10.1101/2023.11.20.566676 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2023/11/21/2023.11.20.566676.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2023.11.20.566676 |
| publication_date | 2023-11-21 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4210520848, https://openalex.org/W3186179742, https://openalex.org/W2072404529, https://openalex.org/W2151581834, https://openalex.org/W4300861364, https://openalex.org/W2898210859, https://openalex.org/W3036737467, https://openalex.org/W3132153121, https://openalex.org/W2014337316, https://openalex.org/W3157271872, https://openalex.org/W3177828909, https://openalex.org/W2163605009, https://openalex.org/W3198923619, https://openalex.org/W1982583124, https://openalex.org/W970615220, https://openalex.org/W2557595285, https://openalex.org/W2962810718, https://openalex.org/W3171848268, https://openalex.org/W2037312364, https://openalex.org/W4210997669, https://openalex.org/W4226108318, https://openalex.org/W2999044305, https://openalex.org/W3187966659, https://openalex.org/W2033806446, https://openalex.org/W2919831875, https://openalex.org/W2102461176, https://openalex.org/W3038329114, https://openalex.org/W4313430582, https://openalex.org/W2804822363, https://openalex.org/W2997234557, https://openalex.org/W2110483430, https://openalex.org/W2987090428, https://openalex.org/W2161151688 |
| referenced_works_count | 33 |
| abstract_inverted_index., | 43, 46 |
| abstract_inverted_index.. | 120, 152, 243 |
| abstract_inverted_index.1 | 119 |
| abstract_inverted_index.8 | 109 |
| abstract_inverted_index.a | 23, 197 |
| abstract_inverted_index.30 | 106 |
| abstract_inverted_index.4M | 121 |
| abstract_inverted_index.De | 148 |
| abstract_inverted_index.To | 19 |
| abstract_inverted_index.We | 169, 194, 233 |
| abstract_inverted_index.an | 38, 89 |
| abstract_inverted_index.as | 164 |
| abstract_inverted_index.be | 222 |
| abstract_inverted_index.by | 60 |
| abstract_inverted_index.in | 16, 125, 166, 224 |
| abstract_inverted_index.is | 12, 156 |
| abstract_inverted_index.of | 13, 191, 205, 213 |
| abstract_inverted_index.on | 73, 96, 108, 130, 141, 183, 199 |
| abstract_inverted_index.to | 9, 47, 161, 174, 239 |
| abstract_inverted_index.we | 36 |
| abstract_inverted_index.(i) | 63 |
| abstract_inverted_index.(vs | 105, 123 |
| abstract_inverted_index.GPU | 102 |
| abstract_inverted_index.and | 50, 79, 86, 116, 150, 179, 202, 207, 209, 230, 237 |
| abstract_inverted_index.are | 58 |
| abstract_inverted_index.big | 26 |
| abstract_inverted_index.ffi | 83, 144 |
| abstract_inverted_index.for | 53, 67, 103, 114, 216, 228 |
| abstract_inverted_index.has | 29 |
| abstract_inverted_index.how | 184 |
| abstract_inverted_index.low | 128 |
| abstract_inverted_index.may | 221 |
| abstract_inverted_index.one | 94, 97 |
| abstract_inverted_index.our | 61, 154, 167, 235 |
| abstract_inverted_index.the | 138, 176, 185, 189, 200, 211, 225 |
| abstract_inverted_index.(ii) | 81 |
| abstract_inverted_index.130M | 124 |
| abstract_inverted_index.3090 | 101 |
| abstract_inverted_index.GPUs | 113 |
| abstract_inverted_index.V100 | 112 |
| abstract_inverted_index.acid | 7 |
| abstract_inverted_index.been | 30 |
| abstract_inverted_index.best | 139 |
| abstract_inverted_index.case | 172 |
| abstract_inverted_index.code | 236 |
| abstract_inverted_index.days | 107 |
| abstract_inverted_index.deep | 25, 40 |
| abstract_inverted_index.from | 5, 158 |
| abstract_inverted_index.make | 196 |
| abstract_inverted_index.only | 93, 118 |
| abstract_inverted_index.some | 171, 181 |
| abstract_inverted_index.this | 21 |
| abstract_inverted_index.time | 201 |
| abstract_inverted_index.week | 95 |
| abstract_inverted_index.with | 32, 71, 88 |
| abstract_inverted_index.(MSA, | 133 |
| abstract_inverted_index.(iii) | 127 |
| abstract_inverted_index.Here, | 35 |
| abstract_inverted_index.amino | 6 |
| abstract_inverted_index.being | 69 |
| abstract_inverted_index.cient | 84, 145 |
| abstract_inverted_index.costs | 204 |
| abstract_inverted_index.data, | 163 |
| abstract_inverted_index.graph | 41 |
| abstract_inverted_index.great | 14 |
| abstract_inverted_index.model | 238 |
| abstract_inverted_index.named | 44 |
| abstract_inverted_index.novo, | 149 |
| abstract_inverted_index.speed | 240 |
| abstract_inverted_index.three | 56, 142 |
| abstract_inverted_index.which | 220 |
| abstract_inverted_index.CAMEO; | 80 |
| abstract_inverted_index.CASP14 | 78 |
| abstract_inverted_index.NVIDIA | 100, 111 |
| abstract_inverted_index.high-e | 82 |
| abstract_inverted_index.issue, | 22 |
| abstract_inverted_index.model, | 27, 91 |
| abstract_inverted_index.models | 215 |
| abstract_inverted_index.report | 37 |
| abstract_inverted_index.single | 98 |
| abstract_inverted_index.tackle | 20 |
| abstract_inverted_index.Orphan, | 147 |
| abstract_inverted_index.academy | 231 |
| abstract_inverted_index.achieve | 48 |
| abstract_inverted_index.costing | 92 |
| abstract_inverted_index.crucial | 223 |
| abstract_inverted_index.further | 195 |
| abstract_inverted_index.general | 99, 159 |
| abstract_inverted_index.network | 42 |
| abstract_inverted_index.popular | 75 |
| abstract_inverted_index.protein | 3, 217 |
| abstract_inverted_index.provide | 180 |
| abstract_inverted_index.release | 234 |
| abstract_inverted_index.studies | 173 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Besides, | 153 |
| abstract_inverted_index.MSA-insu | 143 |
| abstract_inverted_index.Notably, | 55 |
| abstract_inverted_index.Orphan25 | 151 |
| abstract_inverted_index.accurate | 49 |
| abstract_inverted_index.antibody | 162 |
| abstract_inverted_index.datasets | 76 |
| abstract_inverted_index.insights | 182 |
| abstract_inverted_index.multiple | 74 |
| abstract_inverted_index.proposed | 31 |
| abstract_inverted_index.proteins | 160 |
| abstract_inverted_index.research | 227, 242 |
| abstract_inverted_index.resource | 203 |
| abstract_inverted_index.success. | 34 |
| abstract_inverted_index.training | 85 |
| abstract_inverted_index.verified | 165 |
| abstract_inverted_index.achieving | 137 |
| abstract_inverted_index.datasets: | 146 |
| abstract_inverted_index.including | 77 |
| abstract_inverted_index.inference | 87 |
| abstract_inverted_index.possessed | 59 |
| abstract_inverted_index.promising | 33 |
| abstract_inverted_index.proteins, | 68 |
| abstract_inverted_index.proteins. | 54 |
| abstract_inverted_index.research. | 18 |
| abstract_inverted_index.sequences | 8 |
| abstract_inverted_index.structure | 65, 186, 218 |
| abstract_inverted_index.visualize | 170 |
| abstract_inverted_index.Accurately | 1 |
| abstract_inverted_index.alignments | 132 |
| abstract_inverted_index.biological | 17, 192, 241 |
| abstract_inverted_index.containing | 117 |
| abstract_inverted_index.dependency | 129 |
| abstract_inverted_index.discussion | 198 |
| abstract_inverted_index.facilitate | 188 |
| abstract_inverted_index.functions. | 193 |
| abstract_inverted_index.high-speed | 110 |
| abstract_inverted_index.highlights | 57 |
| abstract_inverted_index.homologous | 135 |
| abstract_inverted_index.parameters | 122 |
| abstract_inverted_index.predicting | 2 |
| abstract_inverted_index.prediction | 52, 66 |
| abstract_inverted_index.structure, | 4 |
| abstract_inverted_index.RoseTTAFold | 72 |
| abstract_inverted_index.competitive | 70 |
| abstract_inverted_index.demonstrate | 175, 210 |
| abstract_inverted_index.feasibility | 212 |
| abstract_inverted_index.lightweight | 214 |
| abstract_inverted_index.performance | 140 |
| abstract_inverted_index.prediction, | 178, 219 |
| abstract_inverted_index.predictions | 187 |
| abstract_inverted_index.structures, | 11 |
| abstract_inverted_index.widely-used | 134 |
| abstract_inverted_index.LightRoseTTA | 45, 155, 206 |
| abstract_inverted_index.RoseTTAFold) | 115 |
| abstract_inverted_index.RoseTTAFold, | 28, 208 |
| abstract_inverted_index.experiments. | 168 |
| abstract_inverted_index.high-quality | 177 |
| abstract_inverted_index.significance | 15 |
| abstract_inverted_index.transferable | 157 |
| abstract_inverted_index.universities | 229 |
| abstract_inverted_index.LightRoseTTA: | 62 |
| abstract_inverted_index.RoseTTAFold); | 126 |
| abstract_inverted_index.high-accurate | 64 |
| abstract_inverted_index.information), | 136 |
| abstract_inverted_index.institutions. | 232 |
| abstract_inverted_index.understanding | 190 |
| abstract_inverted_index.high-efficient | 51 |
| abstract_inverted_index.model-training | 104 |
| abstract_inverted_index.multi-sequence | 131 |
| abstract_inverted_index.representative | 24 |
| abstract_inverted_index.resource-limited | 226 |
| abstract_inverted_index.three-dimensional | 10 |
| abstract_inverted_index.ultra-lightweight | 39, 90 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5111077643 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I12509574 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.32927034 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |