LightRoseTTA: High‐Efficient and Accurate Protein Structure Prediction Using a Light‐Weight Deep Graph Model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/advs.202309051
Accurately predicting protein structure, from sequences to 3D structures, is of great significance in biological research. To tackle this issue, a representative deep big model, RoseTTAFold, is proposed with promising success. Here, “a light‐weight deep graph network, named LightRoseTTA,” is reported to achieve accurate and highly efficient prediction for proteins. Notably, three highlights are possessed by LightRoseTTA: i) high‐accurate structure prediction for proteins, being “competitive with RoseTTAFold” on multiple popular datasets including CASP14 and CAMEO; ii) high‐efficient training and inference with a light‐weight model, costing “only 1 week on one single NVIDIA 3090 GPU for model‐training” (vs 30 days on 8 NVIDIA V100 GPUs for RoseTTAFold) and containing “only 1.4M parameters” (vs 130M in RoseTTAFold); iii) low dependency on multi‐sequence alignment (MSA), achieving the best performance on three MSA‐insufficient datasets: Orphan, De novo, and Orphan25. Besides, LightRoseTTA is “transferable” from general proteins to antibody data, as verified in the experiments. The time and resource costs of LightRoseTTA and RoseTTAFold are further discussed to demonstrate the feasibility of light‐weight models for protein structure prediction, which may be crucial in resource‐limited research for universities and academic institutions. The code and model are released to speed biological research ( https://github.com/psp3dcg/LightRoseTTA ).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/advs.202309051
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202309051
- OA Status
- gold
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408884609
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408884609Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/advs.202309051Digital Object Identifier
- Title
-
LightRoseTTA: High‐Efficient and Accurate Protein Structure Prediction Using a Light‐Weight Deep Graph ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-25Full publication date if available
- Authors
-
Xudong Wang, Tong Zhang, Guangbu Liu, Zhen Cui, Zhiyong Zeng, Long Cheng, Wenming Zheng, Jian YangList of authors in order
- Landing page
-
https://doi.org/10.1002/advs.202309051Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202309051Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202309051Direct OA link when available
- Concepts
-
Computer science, Inference, Protein structure prediction, Graph, Deep learning, Artificial intelligence, Dependency (UML), Machine learning, Protein structure, Theoretical computer science, Chemistry, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408884609 |
|---|---|
| doi | https://doi.org/10.1002/advs.202309051 |
| ids.doi | https://doi.org/10.1002/advs.202309051 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40134034 |
| ids.openalex | https://openalex.org/W4408884609 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D011487 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Protein Conformation |
| mesh[1].qualifier_ui | Q000737 |
| mesh[1].descriptor_ui | D011506 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | chemistry |
| mesh[1].descriptor_name | Proteins |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D019295 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Computational Biology |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D012984 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Software |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008958 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Models, Molecular |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D011487 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Protein Conformation |
| mesh[6].qualifier_ui | Q000737 |
| mesh[6].descriptor_ui | D011506 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | chemistry |
| mesh[6].descriptor_name | Proteins |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D019295 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Computational Biology |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D012984 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Software |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D008958 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Models, Molecular |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D011487 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Protein Conformation |
| mesh[11].qualifier_ui | Q000737 |
| mesh[11].descriptor_ui | D011506 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | chemistry |
| mesh[11].descriptor_name | Proteins |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D019295 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Computational Biology |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D012984 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Software |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D008958 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Models, Molecular |
| type | article |
| title | LightRoseTTA: High‐Efficient and Accurate Protein Structure Prediction Using a Light‐Weight Deep Graph Model |
| awards[0].id | https://openalex.org/G5033343354 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61921004 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G1200572148 |
| awards[1].funder_id | https://openalex.org/F4320324174 |
| awards[1].display_name | |
| awards[1].funder_award_id | ZR2022LZH003 |
| awards[1].funder_display_name | Natural Science Foundation of Shandong Province |
| awards[2].id | https://openalex.org/G2058835121 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | U22B2049 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G7791872048 |
| awards[3].funder_id | https://openalex.org/F4320335787 |
| awards[3].display_name | |
| awards[3].funder_award_id | 30919011232 |
| awards[3].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[4].id | https://openalex.org/G1065978008 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 62072244 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| awards[5].id | https://openalex.org/G4531477378 |
| awards[5].funder_id | https://openalex.org/F4320321001 |
| awards[5].display_name | |
| awards[5].funder_award_id | 62076064 |
| awards[5].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 19 |
| biblio.volume | 12 |
| biblio.last_page | e2309051 |
| biblio.first_page | e2309051 |
| topics[0].id | https://openalex.org/T10044 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Protein Structure and Dynamics |
| topics[1].id | https://openalex.org/T12254 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Machine Learning in Bioinformatics |
| topics[2].id | https://openalex.org/T10521 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9965000152587891 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | RNA and protein synthesis mechanisms |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320324174 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Shandong Province |
| funders[2].id | https://openalex.org/F4320335787 |
| funders[2].ror | |
| funders[2].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 5000 |
| apc_list.currency | USD |
| apc_list.value_usd | 5000 |
| apc_paid.value | 5000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 5000 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.74436354637146 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6370673775672913 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C18051474 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5451653599739075 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q899656 |
| concepts[2].display_name | Protein structure prediction |
| concepts[3].id | https://openalex.org/C132525143 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49334874749183655 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[3].display_name | Graph |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4681442379951477 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43836066126823425 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C19768560 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42828524112701416 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q320727 |
| concepts[6].display_name | Dependency (UML) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37623071670532227 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C47701112 |
| concepts[8].level | 2 |
| concepts[8].score | 0.2994745969772339 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q735188 |
| concepts[8].display_name | Protein structure |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1998700499534607 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.10350215435028076 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C55493867 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[11].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.74436354637146 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6370673775672913 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/protein-structure-prediction |
| keywords[2].score | 0.5451653599739075 |
| keywords[2].display_name | Protein structure prediction |
| keywords[3].id | https://openalex.org/keywords/graph |
| keywords[3].score | 0.49334874749183655 |
| keywords[3].display_name | Graph |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.4681442379951477 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.43836066126823425 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/dependency |
| keywords[6].score | 0.42828524112701416 |
| keywords[6].display_name | Dependency (UML) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.37623071670532227 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/protein-structure |
| keywords[8].score | 0.2994745969772339 |
| keywords[8].display_name | Protein structure |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.1998700499534607 |
| keywords[9].display_name | Theoretical computer science |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.10350215435028076 |
| keywords[10].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.1002/advs.202309051 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737737698 |
| locations[0].source.issn | 2198-3844 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2198-3844 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Advanced Science |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202309051 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Advanced Science |
| locations[0].landing_page_url | https://doi.org/10.1002/advs.202309051 |
| locations[1].id | pmid:40134034 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Advanced science (Weinheim, Baden-Wurttemberg, Germany) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40134034 |
| locations[2].id | pmh:oai:doaj.org/article:cca17df6818d4240a5fedea85b953922 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Advanced Science, Vol 12, Iss 19, Pp n/a-n/a (2025) |
| locations[2].landing_page_url | https://doaj.org/article/cca17df6818d4240a5fedea85b953922 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12097069 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Adv Sci (Weinh) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12097069 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5111077643 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xudong Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[0].institutions[0].id | https://openalex.org/I36399199 |
| authorships[0].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xudong Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[1].author.id | https://openalex.org/A5048187697 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4964-3026 |
| authorships[1].author.display_name | Tong Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[1].institutions[0].id | https://openalex.org/I36399199 |
| authorships[1].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tong Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[2].author.id | https://openalex.org/A5092236321 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-6128-1908 |
| authorships[2].author.display_name | Guangbu Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[2].institutions[0].id | https://openalex.org/I36399199 |
| authorships[2].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guangbu Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[3].author.id | https://openalex.org/A5101571224 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8292-6389 |
| authorships[3].author.display_name | Zhen Cui |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[3].institutions[0].id | https://openalex.org/I36399199 |
| authorships[3].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhen Cui |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[4].author.id | https://openalex.org/A5101856202 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7551-7456 |
| authorships[4].author.display_name | Zhiyong Zeng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Automation Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[4].institutions[0].id | https://openalex.org/I36399199 |
| authorships[4].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhiyong Zeng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Automation Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[5].author.id | https://openalex.org/A5100774161 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0578-6244 |
| authorships[5].author.display_name | Long Cheng |
| authorships[5].countries | SG |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I172675005 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Engineering Nanyang Technological University No. 50, Nanyang Avenue Singapore 639798 Singapore |
| authorships[5].institutions[0].id | https://openalex.org/I172675005 |
| authorships[5].institutions[0].ror | https://ror.org/02e7b5302 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I172675005 |
| authorships[5].institutions[0].country_code | SG |
| authorships[5].institutions[0].display_name | Nanyang Technological University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Cheng Long |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Engineering Nanyang Technological University No. 50, Nanyang Avenue Singapore 639798 Singapore |
| authorships[6].author.id | https://openalex.org/A5029771864 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7764-5179 |
| authorships[6].author.display_name | Wenming Zheng |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Biological Science & Medical Engineering Southeast University Nanjing 210096 China |
| authorships[6].institutions[0].id | https://openalex.org/I76569877 |
| authorships[6].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Southeast University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wenming Zheng |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Biological Science & Medical Engineering Southeast University Nanjing 210096 China |
| authorships[7].author.id | https://openalex.org/A5100343820 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1983-012X |
| authorships[7].author.display_name | Jian Yang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China |
| authorships[7].institutions[0].id | https://openalex.org/I36399199 |
| authorships[7].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Jian Yang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202309051 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LightRoseTTA: High‐Efficient and Accurate Protein Structure Prediction Using a Light‐Weight Deep Graph Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10044 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Protein Structure and Dynamics |
| related_works | https://openalex.org/W2067317451, https://openalex.org/W4375867731, https://openalex.org/W2154771632, https://openalex.org/W4211085505, https://openalex.org/W3122478268, https://openalex.org/W2084758217, https://openalex.org/W408804804, https://openalex.org/W4231021675, https://openalex.org/W3086365953, https://openalex.org/W4226072953 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1002/advs.202309051 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737737698 |
| best_oa_location.source.issn | 2198-3844 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2198-3844 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Advanced Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202309051 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Advanced Science |
| best_oa_location.landing_page_url | https://doi.org/10.1002/advs.202309051 |
| primary_location.id | doi:10.1002/advs.202309051 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737737698 |
| primary_location.source.issn | 2198-3844 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2198-3844 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Advanced Science |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.202309051 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Advanced Science |
| primary_location.landing_page_url | https://doi.org/10.1002/advs.202309051 |
| publication_date | 2025-03-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3038329114, https://openalex.org/W2014337316, https://openalex.org/W2072404529, https://openalex.org/W2102461176, https://openalex.org/W2557595285, https://openalex.org/W2999044305, https://openalex.org/W2037312364, https://openalex.org/W2033806446, https://openalex.org/W2997234557, https://openalex.org/W3132153121, https://openalex.org/W1982583124, https://openalex.org/W3186179742, https://openalex.org/W4313430582, https://openalex.org/W4300861364, https://openalex.org/W3198923619, https://openalex.org/W3171848268, https://openalex.org/W2161151688, https://openalex.org/W2110483430, https://openalex.org/W4226108318, https://openalex.org/W2804822363, https://openalex.org/W2987090428, https://openalex.org/W3157271872, https://openalex.org/W3177828909, https://openalex.org/W4210520848, https://openalex.org/W2151581834, https://openalex.org/W2972411752, https://openalex.org/W2898210859, https://openalex.org/W970615220 |
| referenced_works_count | 28 |
| abstract_inverted_index.( | 196 |
| abstract_inverted_index.1 | 87 |
| abstract_inverted_index.8 | 101 |
| abstract_inverted_index.a | 21, 82 |
| abstract_inverted_index.). | 198 |
| abstract_inverted_index.30 | 98 |
| abstract_inverted_index.3D | 8 |
| abstract_inverted_index.De | 132 |
| abstract_inverted_index.To | 17 |
| abstract_inverted_index.as | 146 |
| abstract_inverted_index.be | 176 |
| abstract_inverted_index.by | 56 |
| abstract_inverted_index.i) | 58 |
| abstract_inverted_index.in | 14, 114, 148, 178 |
| abstract_inverted_index.is | 10, 27, 40, 138 |
| abstract_inverted_index.of | 11, 156, 167 |
| abstract_inverted_index.on | 68, 89, 100, 119, 127 |
| abstract_inverted_index.to | 7, 42, 143, 163, 192 |
| abstract_inverted_index.(vs | 97, 112 |
| abstract_inverted_index.GPU | 94 |
| abstract_inverted_index.The | 151, 186 |
| abstract_inverted_index.and | 45, 74, 79, 107, 134, 153, 158, 183, 188 |
| abstract_inverted_index.are | 54, 160, 190 |
| abstract_inverted_index.big | 24 |
| abstract_inverted_index.for | 49, 62, 95, 105, 170, 181 |
| abstract_inverted_index.ii) | 76 |
| abstract_inverted_index.low | 117 |
| abstract_inverted_index.may | 175 |
| abstract_inverted_index.one | 90 |
| abstract_inverted_index.the | 124, 149, 165 |
| abstract_inverted_index.1.4M | 110 |
| abstract_inverted_index.130M | 113 |
| abstract_inverted_index.3090 | 93 |
| abstract_inverted_index.GPUs | 104 |
| abstract_inverted_index.V100 | 103 |
| abstract_inverted_index.best | 125 |
| abstract_inverted_index.code | 187 |
| abstract_inverted_index.days | 99 |
| abstract_inverted_index.deep | 23, 35 |
| abstract_inverted_index.from | 5, 140 |
| abstract_inverted_index.iii) | 116 |
| abstract_inverted_index.this | 19 |
| abstract_inverted_index.time | 152 |
| abstract_inverted_index.week | 88 |
| abstract_inverted_index.with | 29, 66, 81 |
| abstract_inverted_index.“a | 33 |
| abstract_inverted_index.Here, | 32 |
| abstract_inverted_index.being | 64 |
| abstract_inverted_index.costs | 155 |
| abstract_inverted_index.data, | 145 |
| abstract_inverted_index.graph | 36 |
| abstract_inverted_index.great | 12 |
| abstract_inverted_index.model | 189 |
| abstract_inverted_index.named | 38 |
| abstract_inverted_index.novo, | 133 |
| abstract_inverted_index.speed | 193 |
| abstract_inverted_index.three | 52, 128 |
| abstract_inverted_index.which | 174 |
| abstract_inverted_index.(MSA), | 122 |
| abstract_inverted_index.CAMEO; | 75 |
| abstract_inverted_index.CASP14 | 73 |
| abstract_inverted_index.NVIDIA | 92, 102 |
| abstract_inverted_index.highly | 46 |
| abstract_inverted_index.issue, | 20 |
| abstract_inverted_index.model, | 25, 84 |
| abstract_inverted_index.models | 169 |
| abstract_inverted_index.single | 91 |
| abstract_inverted_index.tackle | 18 |
| abstract_inverted_index.Orphan, | 131 |
| abstract_inverted_index.achieve | 43 |
| abstract_inverted_index.costing | 85 |
| abstract_inverted_index.crucial | 177 |
| abstract_inverted_index.further | 161 |
| abstract_inverted_index.general | 141 |
| abstract_inverted_index.popular | 70 |
| abstract_inverted_index.protein | 3, 171 |
| abstract_inverted_index.“only | 86, 109 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Besides, | 136 |
| abstract_inverted_index.Notably, | 51 |
| abstract_inverted_index.academic | 184 |
| abstract_inverted_index.accurate | 44 |
| abstract_inverted_index.antibody | 144 |
| abstract_inverted_index.datasets | 71 |
| abstract_inverted_index.multiple | 69 |
| abstract_inverted_index.network, | 37 |
| abstract_inverted_index.proposed | 28 |
| abstract_inverted_index.proteins | 142 |
| abstract_inverted_index.released | 191 |
| abstract_inverted_index.reported | 41 |
| abstract_inverted_index.research | 180, 195 |
| abstract_inverted_index.resource | 154 |
| abstract_inverted_index.success. | 31 |
| abstract_inverted_index.training | 78 |
| abstract_inverted_index.verified | 147 |
| abstract_inverted_index.Orphan25. | 135 |
| abstract_inverted_index.achieving | 123 |
| abstract_inverted_index.alignment | 121 |
| abstract_inverted_index.datasets: | 130 |
| abstract_inverted_index.discussed | 162 |
| abstract_inverted_index.efficient | 47 |
| abstract_inverted_index.including | 72 |
| abstract_inverted_index.inference | 80 |
| abstract_inverted_index.possessed | 55 |
| abstract_inverted_index.promising | 30 |
| abstract_inverted_index.proteins, | 63 |
| abstract_inverted_index.proteins. | 50 |
| abstract_inverted_index.research. | 16 |
| abstract_inverted_index.sequences | 6 |
| abstract_inverted_index.structure | 60, 172 |
| abstract_inverted_index.Accurately | 1 |
| abstract_inverted_index.biological | 15, 194 |
| abstract_inverted_index.containing | 108 |
| abstract_inverted_index.dependency | 118 |
| abstract_inverted_index.highlights | 53 |
| abstract_inverted_index.predicting | 2 |
| abstract_inverted_index.prediction | 48, 61 |
| abstract_inverted_index.structure, | 4 |
| abstract_inverted_index.RoseTTAFold | 159 |
| abstract_inverted_index.demonstrate | 164 |
| abstract_inverted_index.feasibility | 166 |
| abstract_inverted_index.performance | 126 |
| abstract_inverted_index.prediction, | 173 |
| abstract_inverted_index.structures, | 9 |
| abstract_inverted_index.LightRoseTTA | 137, 157 |
| abstract_inverted_index.RoseTTAFold) | 106 |
| abstract_inverted_index.RoseTTAFold, | 26 |
| abstract_inverted_index.experiments. | 150 |
| abstract_inverted_index.significance | 13 |
| abstract_inverted_index.universities | 182 |
| abstract_inverted_index.LightRoseTTA: | 57 |
| abstract_inverted_index.RoseTTAFold); | 115 |
| abstract_inverted_index.institutions. | 185 |
| abstract_inverted_index.parameters” | 111 |
| abstract_inverted_index.RoseTTAFold” | 67 |
| abstract_inverted_index.light‐weight | 34, 83, 168 |
| abstract_inverted_index.representative | 22 |
| abstract_inverted_index.“competitive | 65 |
| abstract_inverted_index.high‐accurate | 59 |
| abstract_inverted_index.LightRoseTTA,” | 39 |
| abstract_inverted_index.high‐efficient | 77 |
| abstract_inverted_index.multi‐sequence | 120 |
| abstract_inverted_index.MSA‐insufficient | 129 |
| abstract_inverted_index.resource‐limited | 179 |
| abstract_inverted_index.“transferable” | 139 |
| abstract_inverted_index.model‐training” | 96 |
| abstract_inverted_index.https://github.com/psp3dcg/LightRoseTTA | 197 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.08866542 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |