Lightweight deep reinforcement learning for dynamic resource allocation in vehicular edge computing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.dcan.2025.06.005
Vehicular Edge Computing (VEC) enhances the quality of user services by deploying wealth of resources near vehicles. However, due to highly dynamic and complex nature of vehicular networks, centralized decision-making for resource allocation proves inadequate within VECs. Conversely, allocating resources via distributed decision-making consumes vehicular resources. To improve the quality of user service, we formulate a problem of latency minimization, further subdividing this problem into two subproblems to be solved through distributed decision-making. To mitigate the resource consumption caused by distributed decision-making, we propose Reinforcement Learning (RL) algorithm based on sequential alternating multi-agent system mechanism, which effectively reduces the dimensionality of action space without losing the informational content of action, achieving network lightweighting. We discuss the rationality, generalizability, and inherent advantages of proposed mechanism. Simulation results indicate that our proposed mechanism outperforms traditional RL algorithms in terms of stability, generalizability, and adaptability to scenarios with invalid actions, all while achieving network lightweighting.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.dcan.2025.06.005
- OA Status
- diamond
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411371109
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411371109Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.dcan.2025.06.005Digital Object Identifier
- Title
-
Lightweight deep reinforcement learning for dynamic resource allocation in vehicular edge computingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-17Full publication date if available
- Authors
-
Dapeng Wu, Sijun Wu, Yaping Cui, Ailing Zhong, Tong Tang, Ruyan Wang, Xinqi LinList of authors in order
- Landing page
-
https://doi.org/10.1016/j.dcan.2025.06.005Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.dcan.2025.06.005Direct OA link when available
- Concepts
-
Computer science, Reinforcement learning, Enhanced Data Rates for GSM Evolution, Edge computing, Resource allocation, Artificial intelligence, Distributed computing, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411371109 |
|---|---|
| doi | https://doi.org/10.1016/j.dcan.2025.06.005 |
| ids.doi | https://doi.org/10.1016/j.dcan.2025.06.005 |
| ids.openalex | https://openalex.org/W4411371109 |
| fwci | 0.0 |
| type | article |
| title | Lightweight deep reinforcement learning for dynamic resource allocation in vehicular edge computing |
| biblio.issue | 5 |
| biblio.volume | 11 |
| biblio.last_page | 1542 |
| biblio.first_page | 1530 |
| topics[0].id | https://openalex.org/T10273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9937999844551086 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | IoT and Edge/Fog Computing |
| topics[1].id | https://openalex.org/T10270 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9886000156402588 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Blockchain Technology Applications and Security |
| topics[2].id | https://openalex.org/T10761 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9861000180244446 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Vehicular Ad Hoc Networks (VANETs) |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.9078458547592163 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8574832677841187 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C162307627 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5344991087913513 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[2].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[3].id | https://openalex.org/C2778456923 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5138874053955078 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[3].display_name | Edge computing |
| concepts[4].id | https://openalex.org/C29202148 |
| concepts[4].level | 2 |
| concepts[4].score | 0.509093701839447 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q287260 |
| concepts[4].display_name | Resource allocation |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.438912957906723 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C120314980 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3958428204059601 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[6].display_name | Distributed computing |
| concepts[7].id | https://openalex.org/C31258907 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2583163380622864 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[7].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.9078458547592163 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.8574832677841187 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[2].score | 0.5344991087913513 |
| keywords[2].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[3].id | https://openalex.org/keywords/edge-computing |
| keywords[3].score | 0.5138874053955078 |
| keywords[3].display_name | Edge computing |
| keywords[4].id | https://openalex.org/keywords/resource-allocation |
| keywords[4].score | 0.509093701839447 |
| keywords[4].display_name | Resource allocation |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.438912957906723 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/distributed-computing |
| keywords[6].score | 0.3958428204059601 |
| keywords[6].display_name | Distributed computing |
| keywords[7].id | https://openalex.org/keywords/computer-network |
| keywords[7].score | 0.2583163380622864 |
| keywords[7].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.1016/j.dcan.2025.06.005 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2495769766 |
| locations[0].source.issn | 2352-8648, 2468-5925 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-8648 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Digital Communications and Networks |
| locations[0].source.host_organization | https://openalex.org/P4310320345 |
| locations[0].source.host_organization_name | KeAi |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | KeAi, Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Digital Communications and Networks |
| locations[0].landing_page_url | https://doi.org/10.1016/j.dcan.2025.06.005 |
| locations[1].id | pmh:oai:doaj.org/article:0c2b64a7a2a643e7b32b550c7c097de7 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Digital Communications and Networks, Vol 11, Iss 5, Pp 1530-1542 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/0c2b64a7a2a643e7b32b550c7c097de7 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100416785 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2105-9418 |
| authorships[0].author.display_name | Dapeng Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dapeng Wu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5109334235 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-1624-661X |
| authorships[1].author.display_name | Sijun Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sijun Wu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5031886715 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2276-8881 |
| authorships[2].author.display_name | Yaping Cui |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yaping Cui |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059737123 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0290-0585 |
| authorships[3].author.display_name | Ailing Zhong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ailing Zhong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5074140287 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tong Tang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tong Tang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5015476236 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3109-4807 |
| authorships[5].author.display_name | Ruyan Wang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ruyan Wang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100561216 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Xinqi Lin |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xinqi Lin |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.dcan.2025.06.005 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Lightweight deep reinforcement learning for dynamic resource allocation in vehicular edge computing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-20T23:13:51.555489 |
| primary_topic.id | https://openalex.org/T10273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9937999844551086 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | IoT and Edge/Fog Computing |
| related_works | https://openalex.org/W4306904969, https://openalex.org/W2138720691, https://openalex.org/W4362501864, https://openalex.org/W4380318855, https://openalex.org/W3084456289, https://openalex.org/W4324372666, https://openalex.org/W4225706866, https://openalex.org/W2914646191, https://openalex.org/W3023564924, https://openalex.org/W2942586735 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.dcan.2025.06.005 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2495769766 |
| best_oa_location.source.issn | 2352-8648, 2468-5925 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-8648 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Digital Communications and Networks |
| best_oa_location.source.host_organization | https://openalex.org/P4310320345 |
| best_oa_location.source.host_organization_name | KeAi |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | KeAi, Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Digital Communications and Networks |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.dcan.2025.06.005 |
| primary_location.id | doi:10.1016/j.dcan.2025.06.005 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2495769766 |
| primary_location.source.issn | 2352-8648, 2468-5925 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-8648 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Digital Communications and Networks |
| primary_location.source.host_organization | https://openalex.org/P4310320345 |
| primary_location.source.host_organization_name | KeAi |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320345, https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | KeAi, Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Digital Communications and Networks |
| primary_location.landing_page_url | https://doi.org/10.1016/j.dcan.2025.06.005 |
| publication_date | 2025-06-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4285303821, https://openalex.org/W3006140890, https://openalex.org/W3124725679, https://openalex.org/W2561715741, https://openalex.org/W3004417498, https://openalex.org/W2918379587, https://openalex.org/W2015454796, https://openalex.org/W2145339207, https://openalex.org/W3166816823, https://openalex.org/W2885703553, https://openalex.org/W2885109498, https://openalex.org/W2889679424, https://openalex.org/W3158091394, https://openalex.org/W2968764495, https://openalex.org/W2968424451, https://openalex.org/W2761862361, https://openalex.org/W4293143609, https://openalex.org/W4321483887, https://openalex.org/W2949209069, https://openalex.org/W2810217655, https://openalex.org/W3168768468, https://openalex.org/W4234230440, https://openalex.org/W2891217993, https://openalex.org/W3037164854, https://openalex.org/W3161618639, https://openalex.org/W4244466895 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 55 |
| abstract_inverted_index.RL | 133 |
| abstract_inverted_index.To | 46, 73 |
| abstract_inverted_index.We | 113 |
| abstract_inverted_index.be | 68 |
| abstract_inverted_index.by | 10, 79 |
| abstract_inverted_index.in | 135 |
| abstract_inverted_index.of | 7, 13, 25, 50, 57, 100, 108, 121, 137 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.to | 19, 67, 142 |
| abstract_inverted_index.we | 53, 82 |
| abstract_inverted_index.all | 147 |
| abstract_inverted_index.and | 22, 118, 140 |
| abstract_inverted_index.due | 18 |
| abstract_inverted_index.for | 30 |
| abstract_inverted_index.our | 128 |
| abstract_inverted_index.the | 5, 48, 75, 98, 105, 115 |
| abstract_inverted_index.two | 65 |
| abstract_inverted_index.via | 40 |
| abstract_inverted_index.(RL) | 86 |
| abstract_inverted_index.Edge | 1 |
| abstract_inverted_index.into | 64 |
| abstract_inverted_index.near | 15 |
| abstract_inverted_index.that | 127 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.user | 8, 51 |
| abstract_inverted_index.with | 144 |
| abstract_inverted_index.(VEC) | 3 |
| abstract_inverted_index.VECs. | 36 |
| abstract_inverted_index.based | 88 |
| abstract_inverted_index.space | 102 |
| abstract_inverted_index.terms | 136 |
| abstract_inverted_index.which | 95 |
| abstract_inverted_index.while | 148 |
| abstract_inverted_index.action | 101 |
| abstract_inverted_index.caused | 78 |
| abstract_inverted_index.highly | 20 |
| abstract_inverted_index.losing | 104 |
| abstract_inverted_index.nature | 24 |
| abstract_inverted_index.proves | 33 |
| abstract_inverted_index.solved | 69 |
| abstract_inverted_index.system | 93 |
| abstract_inverted_index.wealth | 12 |
| abstract_inverted_index.within | 35 |
| abstract_inverted_index.action, | 109 |
| abstract_inverted_index.complex | 23 |
| abstract_inverted_index.content | 107 |
| abstract_inverted_index.discuss | 114 |
| abstract_inverted_index.dynamic | 21 |
| abstract_inverted_index.further | 60 |
| abstract_inverted_index.improve | 47 |
| abstract_inverted_index.invalid | 145 |
| abstract_inverted_index.latency | 58 |
| abstract_inverted_index.network | 111, 150 |
| abstract_inverted_index.problem | 56, 63 |
| abstract_inverted_index.propose | 83 |
| abstract_inverted_index.quality | 6, 49 |
| abstract_inverted_index.reduces | 97 |
| abstract_inverted_index.results | 125 |
| abstract_inverted_index.through | 70 |
| abstract_inverted_index.without | 103 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.Learning | 85 |
| abstract_inverted_index.actions, | 146 |
| abstract_inverted_index.consumes | 43 |
| abstract_inverted_index.enhances | 4 |
| abstract_inverted_index.indicate | 126 |
| abstract_inverted_index.inherent | 119 |
| abstract_inverted_index.mitigate | 74 |
| abstract_inverted_index.proposed | 122, 129 |
| abstract_inverted_index.resource | 31, 76 |
| abstract_inverted_index.service, | 52 |
| abstract_inverted_index.services | 9 |
| abstract_inverted_index.Computing | 2 |
| abstract_inverted_index.Vehicular | 0 |
| abstract_inverted_index.achieving | 110, 149 |
| abstract_inverted_index.algorithm | 87 |
| abstract_inverted_index.deploying | 11 |
| abstract_inverted_index.formulate | 54 |
| abstract_inverted_index.mechanism | 130 |
| abstract_inverted_index.networks, | 27 |
| abstract_inverted_index.resources | 14, 39 |
| abstract_inverted_index.scenarios | 143 |
| abstract_inverted_index.vehicles. | 16 |
| abstract_inverted_index.vehicular | 26, 44 |
| abstract_inverted_index.Simulation | 124 |
| abstract_inverted_index.advantages | 120 |
| abstract_inverted_index.algorithms | 134 |
| abstract_inverted_index.allocating | 38 |
| abstract_inverted_index.allocation | 32 |
| abstract_inverted_index.inadequate | 34 |
| abstract_inverted_index.mechanism, | 94 |
| abstract_inverted_index.mechanism. | 123 |
| abstract_inverted_index.resources. | 45 |
| abstract_inverted_index.sequential | 90 |
| abstract_inverted_index.stability, | 138 |
| abstract_inverted_index.Conversely, | 37 |
| abstract_inverted_index.alternating | 91 |
| abstract_inverted_index.centralized | 28 |
| abstract_inverted_index.consumption | 77 |
| abstract_inverted_index.distributed | 41, 71, 80 |
| abstract_inverted_index.effectively | 96 |
| abstract_inverted_index.multi-agent | 92 |
| abstract_inverted_index.outperforms | 131 |
| abstract_inverted_index.subdividing | 61 |
| abstract_inverted_index.subproblems | 66 |
| abstract_inverted_index.traditional | 132 |
| abstract_inverted_index.adaptability | 141 |
| abstract_inverted_index.rationality, | 116 |
| abstract_inverted_index.Reinforcement | 84 |
| abstract_inverted_index.informational | 106 |
| abstract_inverted_index.minimization, | 59 |
| abstract_inverted_index.dimensionality | 99 |
| abstract_inverted_index.decision-making | 29, 42 |
| abstract_inverted_index.lightweighting. | 112, 151 |
| abstract_inverted_index.decision-making, | 81 |
| abstract_inverted_index.decision-making. | 72 |
| abstract_inverted_index.generalizability, | 117, 139 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.26092101 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |