Lightweight Machine Learning-Based DOS Attack Detection in Wireless Sensor Networks Using Decision Tree and Information Gain Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.55041/ijsrem39124
—Wireless Sensor Networks (WSNs) are rapidly expanding across various domains due to their unique characteristics and performance capabilities. However, these networks are highly vulnerable to a range of security threats, particularly Denial-of-Service (DoS) attacks, which are among the most common in WSNs. This paper explores the vulnerabilities of WSNs, focusing on DoS threats, and reviews current techniques for their detection. It introduces a lightweight machine learning-based approach using a decision tree (DT) algorithm with the Information Gain (IG) feature selection method for efficient DoS detection. Tested on an enhanced WSN-DS dataset, the proposed method demonstrated high accuracy and minimal processing time compared to other classifiers, such as XGBoost, and RF. This efficiency makes the proposed method well-suited for real- time DoS attack detection in resource-constrained WSNs. Keywords—Machine Learning,Decision Tree (DT),Information Gain (IG),DoS attack detection
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.55041/ijsrem39124
- https://ijsrem.com/download/lightweight-machine-learning-based-dos-attack-detection-in-wireless-sensor-networks-using-decision-tree-and-information-gain/?wpdmdl=40526&refresh=6748b1315eab31732817201
- OA Status
- bronze
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404756373
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404756373Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.55041/ijsrem39124Digital Object Identifier
- Title
-
Lightweight Machine Learning-Based DOS Attack Detection in Wireless Sensor Networks Using Decision Tree and Information GainWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-27Full publication date if available
- Authors
-
J Iswarya, T. V. Chithra M.EList of authors in order
- Landing page
-
https://doi.org/10.55041/ijsrem39124Publisher landing page
- PDF URL
-
https://ijsrem.com/download/lightweight-machine-learning-based-dos-attack-detection-in-wireless-sensor-networks-using-decision-tree-and-information-gain/?wpdmdl=40526&refresh=6748b1315eab31732817201Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://ijsrem.com/download/lightweight-machine-learning-based-dos-attack-detection-in-wireless-sensor-networks-using-decision-tree-and-information-gain/?wpdmdl=40526&refresh=6748b1315eab31732817201Direct OA link when available
- Concepts
-
Decision tree, Information gain, Computer science, Wireless sensor network, Tree (set theory), Decision tree learning, Wireless, Information gain ratio, Wireless network, Machine learning, Computer network, Artificial intelligence, Telecommunications, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404756373 |
|---|---|
| doi | https://doi.org/10.55041/ijsrem39124 |
| ids.doi | https://doi.org/10.55041/ijsrem39124 |
| ids.openalex | https://openalex.org/W4404756373 |
| fwci | 0.0 |
| type | article |
| title | Lightweight Machine Learning-Based DOS Attack Detection in Wireless Sensor Networks Using Decision Tree and Information Gain |
| biblio.issue | 11 |
| biblio.volume | 08 |
| biblio.last_page | 7 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9876000285148621 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C84525736 |
| concepts[0].level | 2 |
| concepts[0].score | 0.709083080291748 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[0].display_name | Decision tree |
| concepts[1].id | https://openalex.org/C2983203078 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7031943202018738 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q255166 |
| concepts[1].display_name | Information gain |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6798154711723328 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C24590314 |
| concepts[3].level | 2 |
| concepts[3].score | 0.670114278793335 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[3].display_name | Wireless sensor network |
| concepts[4].id | https://openalex.org/C113174947 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4755672812461853 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[4].display_name | Tree (set theory) |
| concepts[5].id | https://openalex.org/C5481197 |
| concepts[5].level | 3 |
| concepts[5].score | 0.46599188446998596 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q16766476 |
| concepts[5].display_name | Decision tree learning |
| concepts[6].id | https://openalex.org/C555944384 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46357420086860657 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[6].display_name | Wireless |
| concepts[7].id | https://openalex.org/C202185110 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45910242199897766 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6031086 |
| concepts[7].display_name | Information gain ratio |
| concepts[8].id | https://openalex.org/C108037233 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41405293345451355 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11375 |
| concepts[8].display_name | Wireless network |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41376858949661255 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4043896198272705 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3734053373336792 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.14979949593544006 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.07658249139785767 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/decision-tree |
| keywords[0].score | 0.709083080291748 |
| keywords[0].display_name | Decision tree |
| keywords[1].id | https://openalex.org/keywords/information-gain |
| keywords[1].score | 0.7031943202018738 |
| keywords[1].display_name | Information gain |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6798154711723328 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[3].score | 0.670114278793335 |
| keywords[3].display_name | Wireless sensor network |
| keywords[4].id | https://openalex.org/keywords/tree |
| keywords[4].score | 0.4755672812461853 |
| keywords[4].display_name | Tree (set theory) |
| keywords[5].id | https://openalex.org/keywords/decision-tree-learning |
| keywords[5].score | 0.46599188446998596 |
| keywords[5].display_name | Decision tree learning |
| keywords[6].id | https://openalex.org/keywords/wireless |
| keywords[6].score | 0.46357420086860657 |
| keywords[6].display_name | Wireless |
| keywords[7].id | https://openalex.org/keywords/information-gain-ratio |
| keywords[7].score | 0.45910242199897766 |
| keywords[7].display_name | Information gain ratio |
| keywords[8].id | https://openalex.org/keywords/wireless-network |
| keywords[8].score | 0.41405293345451355 |
| keywords[8].display_name | Wireless network |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.41376858949661255 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.4043896198272705 |
| keywords[10].display_name | Computer network |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3734053373336792 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.14979949593544006 |
| keywords[12].display_name | Telecommunications |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.07658249139785767 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.55041/ijsrem39124 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210240841 |
| locations[0].source.issn | 2582-3930 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2582-3930 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://ijsrem.com/download/lightweight-machine-learning-based-dos-attack-detection-in-wireless-sensor-networks-using-decision-tree-and-information-gain/?wpdmdl=40526&refresh=6748b1315eab31732817201 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| locations[0].landing_page_url | https://doi.org/10.55041/ijsrem39124 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5114820346 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | J Iswarya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Iswarya J |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114820347 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | T. V. Chithra M.E |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dr. T. V. Chithra M.E, Ph.D |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijsrem.com/download/lightweight-machine-learning-based-dos-attack-detection-in-wireless-sensor-networks-using-decision-tree-and-information-gain/?wpdmdl=40526&refresh=6748b1315eab31732817201 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-11-28T00:00:00 |
| display_name | Lightweight Machine Learning-Based DOS Attack Detection in Wireless Sensor Networks Using Decision Tree and Information Gain |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9876000285148621 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2622249843, https://openalex.org/W2132193332, https://openalex.org/W1993915942, https://openalex.org/W3003508951, https://openalex.org/W1995187888, https://openalex.org/W3009849796, https://openalex.org/W2388181483, https://openalex.org/W2356329332, https://openalex.org/W2036355278, https://openalex.org/W2379323858 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.55041/ijsrem39124 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210240841 |
| best_oa_location.source.issn | 2582-3930 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2582-3930 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ijsrem.com/download/lightweight-machine-learning-based-dos-attack-detection-in-wireless-sensor-networks-using-decision-tree-and-information-gain/?wpdmdl=40526&refresh=6748b1315eab31732817201 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| best_oa_location.landing_page_url | https://doi.org/10.55041/ijsrem39124 |
| primary_location.id | doi:10.55041/ijsrem39124 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210240841 |
| primary_location.source.issn | 2582-3930 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2582-3930 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://ijsrem.com/download/lightweight-machine-learning-based-dos-attack-detection-in-wireless-sensor-networks-using-decision-tree-and-information-gain/?wpdmdl=40526&refresh=6748b1315eab31732817201 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT |
| primary_location.landing_page_url | https://doi.org/10.55041/ijsrem39124 |
| publication_date | 2024-11-27 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2163024736, https://openalex.org/W2525336835, https://openalex.org/W4318043077, https://openalex.org/W2926701059, https://openalex.org/W4297903287, https://openalex.org/W2915969651, https://openalex.org/W4320037378, https://openalex.org/W3107833954, https://openalex.org/W4319299441, https://openalex.org/W4378903134, https://openalex.org/W2972391541, https://openalex.org/W4221079563, https://openalex.org/W2941918278, https://openalex.org/W3025204993 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 25, 62, 68 |
| abstract_inverted_index.It | 60 |
| abstract_inverted_index.an | 87 |
| abstract_inverted_index.as | 106 |
| abstract_inverted_index.in | 40, 123 |
| abstract_inverted_index.of | 27, 47 |
| abstract_inverted_index.on | 50, 86 |
| abstract_inverted_index.to | 11, 24, 102 |
| abstract_inverted_index.DoS | 51, 83, 120 |
| abstract_inverted_index.RF. | 109 |
| abstract_inverted_index.and | 15, 53, 97, 108 |
| abstract_inverted_index.are | 4, 21, 35 |
| abstract_inverted_index.due | 10 |
| abstract_inverted_index.for | 57, 81, 117 |
| abstract_inverted_index.the | 37, 45, 74, 91, 113 |
| abstract_inverted_index.(DT) | 71 |
| abstract_inverted_index.(IG) | 77 |
| abstract_inverted_index.Gain | 76, 130 |
| abstract_inverted_index.This | 42, 110 |
| abstract_inverted_index.Tree | 128 |
| abstract_inverted_index.high | 95 |
| abstract_inverted_index.most | 38 |
| abstract_inverted_index.such | 105 |
| abstract_inverted_index.time | 100, 119 |
| abstract_inverted_index.tree | 70 |
| abstract_inverted_index.with | 73 |
| abstract_inverted_index.(DoS) | 32 |
| abstract_inverted_index.WSNs, | 48 |
| abstract_inverted_index.WSNs. | 41, 125 |
| abstract_inverted_index.among | 36 |
| abstract_inverted_index.makes | 112 |
| abstract_inverted_index.other | 103 |
| abstract_inverted_index.paper | 43 |
| abstract_inverted_index.range | 26 |
| abstract_inverted_index.real- | 118 |
| abstract_inverted_index.their | 12, 58 |
| abstract_inverted_index.these | 19 |
| abstract_inverted_index.using | 67 |
| abstract_inverted_index.which | 34 |
| abstract_inverted_index.(WSNs) | 3 |
| abstract_inverted_index.Sensor | 1 |
| abstract_inverted_index.Tested | 85 |
| abstract_inverted_index.WSN-DS | 89 |
| abstract_inverted_index.across | 7 |
| abstract_inverted_index.attack | 121, 132 |
| abstract_inverted_index.common | 39 |
| abstract_inverted_index.highly | 22 |
| abstract_inverted_index.method | 80, 93, 115 |
| abstract_inverted_index.unique | 13 |
| abstract_inverted_index.current | 55 |
| abstract_inverted_index.domains | 9 |
| abstract_inverted_index.feature | 78 |
| abstract_inverted_index.machine | 64 |
| abstract_inverted_index.minimal | 98 |
| abstract_inverted_index.rapidly | 5 |
| abstract_inverted_index.reviews | 54 |
| abstract_inverted_index.various | 8 |
| abstract_inverted_index.(IG),DoS | 131 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.Networks | 2 |
| abstract_inverted_index.XGBoost, | 107 |
| abstract_inverted_index.accuracy | 96 |
| abstract_inverted_index.approach | 66 |
| abstract_inverted_index.attacks, | 33 |
| abstract_inverted_index.compared | 101 |
| abstract_inverted_index.dataset, | 90 |
| abstract_inverted_index.decision | 69 |
| abstract_inverted_index.enhanced | 88 |
| abstract_inverted_index.explores | 44 |
| abstract_inverted_index.focusing | 49 |
| abstract_inverted_index.networks | 20 |
| abstract_inverted_index.proposed | 92, 114 |
| abstract_inverted_index.security | 28 |
| abstract_inverted_index.threats, | 29, 52 |
| abstract_inverted_index.algorithm | 72 |
| abstract_inverted_index.detection | 122, 133 |
| abstract_inverted_index.efficient | 82 |
| abstract_inverted_index.expanding | 6 |
| abstract_inverted_index.selection | 79 |
| abstract_inverted_index.detection. | 59, 84 |
| abstract_inverted_index.efficiency | 111 |
| abstract_inverted_index.introduces | 61 |
| abstract_inverted_index.processing | 99 |
| abstract_inverted_index.techniques | 56 |
| abstract_inverted_index.vulnerable | 23 |
| abstract_inverted_index.Information | 75 |
| abstract_inverted_index.lightweight | 63 |
| abstract_inverted_index.performance | 16 |
| abstract_inverted_index.well-suited | 116 |
| abstract_inverted_index.classifiers, | 104 |
| abstract_inverted_index.demonstrated | 94 |
| abstract_inverted_index.particularly | 30 |
| abstract_inverted_index.capabilities. | 17 |
| abstract_inverted_index.learning-based | 65 |
| abstract_inverted_index.characteristics | 14 |
| abstract_inverted_index.vulnerabilities | 46 |
| abstract_inverted_index.(DT),Information | 129 |
| abstract_inverted_index.Denial-of-Service | 31 |
| abstract_inverted_index.Learning,Decision | 127 |
| abstract_inverted_index.Keywords—Machine | 126 |
| abstract_inverted_index.Abstract—Wireless | 0 |
| abstract_inverted_index.resource-constrained | 124 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.28799975 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |