Lightweight Richardson-Lucy network for accelerated fluorescence microscope deconvolution Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1364/oe.578282
Fluorescence microscopy contrast and resolution can be greatly improved through deconvolution. Deep unfolding deconvolution networks have recently received significant attention by combining the interpretability of traditional models with enhanced reconstruction efficiency and quality through data-driven learning. However, the proliferation of network layers complicates computation, reduces the interpretability of the model, and requires more training data with increasing network parameters. In this study, we present the accelerated Richardson-Lucy network (ARLN), which incorporates momentum information and the Richardson-Lucy (RL) model into a lightweight neural network. ARLN emphasizes learning knowledge within the image domain and introduces an additive accelerated vector through minimal trainable convolution layers, which are integrated into the RL iterative scheme to accelerate convergence. Both simulations and real experiments demonstrate that, despite its simplicity, ARLN ensures interpretability and achieves comparable or even superior reconstruction performance, especially in small-sample scenarios. It reduces iterations by 6–10 × compared to the accelerated Richardson-Lucy (ARL) algorithm, achieves a greater reduction than 70% in computational cost and the number of parameters relative to lightweight networks, and reconstructs approximately 4–12 × faster than two representative model-driven networks. Owing to its lightweight design and accelerated deconvolution capability, ARLN has great potential and practical importance in restoring fast and resource-constrained fluorescence microscopy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1364/oe.578282
- OA Status
- gold
- References
- 33
- OpenAlex ID
- https://openalex.org/W4415869477
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415869477Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1364/oe.578282Digital Object Identifier
- Title
-
Lightweight Richardson-Lucy network for accelerated fluorescence microscope deconvolutionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-04Full publication date if available
- Authors
-
Xiaojun Zhao, Yanan Xiao, H.Z. Wu, Guangcai Liu, Hui Gong, Qingming Luo, Xiaoquan YangList of authors in order
- Landing page
-
https://doi.org/10.1364/oe.578282Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1364/oe.578282Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415869477 |
|---|---|
| doi | https://doi.org/10.1364/oe.578282 |
| ids.doi | https://doi.org/10.1364/oe.578282 |
| ids.openalex | https://openalex.org/W4415869477 |
| fwci | |
| type | article |
| title | Lightweight Richardson-Lucy network for accelerated fluorescence microscope deconvolution |
| biblio.issue | 23 |
| biblio.volume | 33 |
| biblio.last_page | 49741 |
| biblio.first_page | 49741 |
| is_xpac | False |
| apc_list.value | 2270 |
| apc_list.currency | USD |
| apc_list.value_usd | 2270 |
| apc_paid.value | 2270 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2270 |
| language | en |
| locations[0].id | doi:10.1364/oe.578282 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S178776955 |
| locations[0].source.issn | 1094-4087 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1094-4087 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Optics Express |
| locations[0].source.host_organization | https://openalex.org/P4310315679 |
| locations[0].source.host_organization_name | Optica Publishing Group |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315679 |
| locations[0].source.host_organization_lineage_names | Optica Publishing Group |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Optics Express |
| locations[0].landing_page_url | https://doi.org/10.1364/oe.578282 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100629102 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8856-6129 |
| authorships[0].author.display_name | Xiaojun Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaojun Zhao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5044594995 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6781-1997 |
| authorships[1].author.display_name | Yanan Xiao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | yahui xiao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103564733 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | H.Z. Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | haoyang wu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006291655 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Guangcai Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guangcai Liu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5114021688 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3707-8429 |
| authorships[4].author.display_name | Hui Gong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hui Gong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5056033605 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6725-9311 |
| authorships[5].author.display_name | Qingming Luo |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Qingming Luo |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101760984 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4865-7864 |
| authorships[6].author.display_name | Xiaoquan Yang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xiaoquan Yang |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1364/oe.578282 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-04T00:00:00 |
| display_name | Lightweight Richardson-Lucy network for accelerated fluorescence microscope deconvolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-15T23:13:30.683059 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1364/oe.578282 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S178776955 |
| best_oa_location.source.issn | 1094-4087 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1094-4087 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Optics Express |
| best_oa_location.source.host_organization | https://openalex.org/P4310315679 |
| best_oa_location.source.host_organization_name | Optica Publishing Group |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315679 |
| best_oa_location.source.host_organization_lineage_names | Optica Publishing Group |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Optics Express |
| best_oa_location.landing_page_url | https://doi.org/10.1364/oe.578282 |
| primary_location.id | doi:10.1364/oe.578282 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S178776955 |
| primary_location.source.issn | 1094-4087 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1094-4087 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Optics Express |
| primary_location.source.host_organization | https://openalex.org/P4310315679 |
| primary_location.source.host_organization_name | Optica Publishing Group |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315679 |
| primary_location.source.host_organization_lineage_names | Optica Publishing Group |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Optics Express |
| primary_location.landing_page_url | https://doi.org/10.1364/oe.578282 |
| publication_date | 2025-11-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4388188454, https://openalex.org/W2982421002, https://openalex.org/W2467946152, https://openalex.org/W3215162076, https://openalex.org/W3134405878, https://openalex.org/W4313331921, https://openalex.org/W4307189091, https://openalex.org/W4386220464, https://openalex.org/W4380714902, https://openalex.org/W4313888067, https://openalex.org/W3211495999, https://openalex.org/W3037300642, https://openalex.org/W2797383067, https://openalex.org/W2568027424, https://openalex.org/W3165822876, https://openalex.org/W4361198686, https://openalex.org/W3133902371, https://openalex.org/W4200160233, https://openalex.org/W4310836095, https://openalex.org/W4362683589, https://openalex.org/W4200462364, https://openalex.org/W4307716783, https://openalex.org/W4321021964, https://openalex.org/W2138966546, https://openalex.org/W2088909704, https://openalex.org/W2170608748, https://openalex.org/W2020111712, https://openalex.org/W2049633694, https://openalex.org/W1980287119, https://openalex.org/W3192434881, https://openalex.org/W2031740917, https://openalex.org/W3016974004, https://openalex.org/W4394764020 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 79, 152 |
| abstract_inverted_index.In | 59 |
| abstract_inverted_index.It | 138 |
| abstract_inverted_index.RL | 107 |
| abstract_inverted_index.an | 93 |
| abstract_inverted_index.be | 6 |
| abstract_inverted_index.by | 20, 141 |
| abstract_inverted_index.in | 135, 157, 196 |
| abstract_inverted_index.of | 24, 39, 47, 163 |
| abstract_inverted_index.or | 129 |
| abstract_inverted_index.to | 110, 145, 166, 181 |
| abstract_inverted_index.we | 62 |
| abstract_inverted_index.× | 143, 173 |
| abstract_inverted_index.70% | 156 |
| abstract_inverted_index.and | 3, 31, 50, 73, 91, 115, 126, 160, 169, 185, 193, 199 |
| abstract_inverted_index.are | 103 |
| abstract_inverted_index.can | 5 |
| abstract_inverted_index.has | 190 |
| abstract_inverted_index.its | 121, 182 |
| abstract_inverted_index.the | 22, 37, 45, 48, 64, 74, 88, 106, 146, 161 |
| abstract_inverted_index.two | 176 |
| abstract_inverted_index.(RL) | 76 |
| abstract_inverted_index.ARLN | 83, 123, 189 |
| abstract_inverted_index.Both | 113 |
| abstract_inverted_index.Deep | 11 |
| abstract_inverted_index.cost | 159 |
| abstract_inverted_index.data | 54 |
| abstract_inverted_index.even | 130 |
| abstract_inverted_index.fast | 198 |
| abstract_inverted_index.have | 15 |
| abstract_inverted_index.into | 78, 105 |
| abstract_inverted_index.more | 52 |
| abstract_inverted_index.real | 116 |
| abstract_inverted_index.than | 155, 175 |
| abstract_inverted_index.this | 60 |
| abstract_inverted_index.with | 27, 55 |
| abstract_inverted_index.(ARL) | 149 |
| abstract_inverted_index.Owing | 180 |
| abstract_inverted_index.great | 191 |
| abstract_inverted_index.image | 89 |
| abstract_inverted_index.model | 77 |
| abstract_inverted_index.that, | 119 |
| abstract_inverted_index.which | 69, 102 |
| abstract_inverted_index.4–12 | 172 |
| abstract_inverted_index.6–10 | 142 |
| abstract_inverted_index.design | 184 |
| abstract_inverted_index.domain | 90 |
| abstract_inverted_index.faster | 174 |
| abstract_inverted_index.layers | 41 |
| abstract_inverted_index.model, | 49 |
| abstract_inverted_index.models | 26 |
| abstract_inverted_index.neural | 81 |
| abstract_inverted_index.number | 162 |
| abstract_inverted_index.scheme | 109 |
| abstract_inverted_index.study, | 61 |
| abstract_inverted_index.vector | 96 |
| abstract_inverted_index.within | 87 |
| abstract_inverted_index.(ARLN), | 68 |
| abstract_inverted_index.despite | 120 |
| abstract_inverted_index.ensures | 124 |
| abstract_inverted_index.greater | 153 |
| abstract_inverted_index.greatly | 7 |
| abstract_inverted_index.layers, | 101 |
| abstract_inverted_index.minimal | 98 |
| abstract_inverted_index.network | 40, 57, 67 |
| abstract_inverted_index.present | 63 |
| abstract_inverted_index.quality | 32 |
| abstract_inverted_index.reduces | 44, 139 |
| abstract_inverted_index.through | 9, 33, 97 |
| abstract_inverted_index.However, | 36 |
| abstract_inverted_index.achieves | 127, 151 |
| abstract_inverted_index.additive | 94 |
| abstract_inverted_index.compared | 144 |
| abstract_inverted_index.contrast | 2 |
| abstract_inverted_index.enhanced | 28 |
| abstract_inverted_index.improved | 8 |
| abstract_inverted_index.learning | 85 |
| abstract_inverted_index.momentum | 71 |
| abstract_inverted_index.network. | 82 |
| abstract_inverted_index.networks | 14 |
| abstract_inverted_index.received | 17 |
| abstract_inverted_index.recently | 16 |
| abstract_inverted_index.relative | 165 |
| abstract_inverted_index.requires | 51 |
| abstract_inverted_index.superior | 131 |
| abstract_inverted_index.training | 53 |
| abstract_inverted_index.attention | 19 |
| abstract_inverted_index.combining | 21 |
| abstract_inverted_index.iterative | 108 |
| abstract_inverted_index.knowledge | 86 |
| abstract_inverted_index.learning. | 35 |
| abstract_inverted_index.networks, | 168 |
| abstract_inverted_index.networks. | 179 |
| abstract_inverted_index.potential | 192 |
| abstract_inverted_index.practical | 194 |
| abstract_inverted_index.reduction | 154 |
| abstract_inverted_index.restoring | 197 |
| abstract_inverted_index.trainable | 99 |
| abstract_inverted_index.unfolding | 12 |
| abstract_inverted_index.accelerate | 111 |
| abstract_inverted_index.algorithm, | 150 |
| abstract_inverted_index.comparable | 128 |
| abstract_inverted_index.efficiency | 30 |
| abstract_inverted_index.emphasizes | 84 |
| abstract_inverted_index.especially | 134 |
| abstract_inverted_index.importance | 195 |
| abstract_inverted_index.increasing | 56 |
| abstract_inverted_index.integrated | 104 |
| abstract_inverted_index.introduces | 92 |
| abstract_inverted_index.iterations | 140 |
| abstract_inverted_index.microscopy | 1 |
| abstract_inverted_index.parameters | 164 |
| abstract_inverted_index.resolution | 4 |
| abstract_inverted_index.scenarios. | 137 |
| abstract_inverted_index.accelerated | 65, 95, 147, 186 |
| abstract_inverted_index.capability, | 188 |
| abstract_inverted_index.complicates | 42 |
| abstract_inverted_index.convolution | 100 |
| abstract_inverted_index.data-driven | 34 |
| abstract_inverted_index.demonstrate | 118 |
| abstract_inverted_index.experiments | 117 |
| abstract_inverted_index.information | 72 |
| abstract_inverted_index.lightweight | 80, 167, 183 |
| abstract_inverted_index.microscopy. | 202 |
| abstract_inverted_index.parameters. | 58 |
| abstract_inverted_index.significant | 18 |
| abstract_inverted_index.simplicity, | 122 |
| abstract_inverted_index.simulations | 114 |
| abstract_inverted_index.traditional | 25 |
| abstract_inverted_index.Fluorescence | 0 |
| abstract_inverted_index.computation, | 43 |
| abstract_inverted_index.convergence. | 112 |
| abstract_inverted_index.fluorescence | 201 |
| abstract_inverted_index.incorporates | 70 |
| abstract_inverted_index.model-driven | 178 |
| abstract_inverted_index.performance, | 133 |
| abstract_inverted_index.reconstructs | 170 |
| abstract_inverted_index.small-sample | 136 |
| abstract_inverted_index.approximately | 171 |
| abstract_inverted_index.computational | 158 |
| abstract_inverted_index.deconvolution | 13, 187 |
| abstract_inverted_index.proliferation | 38 |
| abstract_inverted_index.deconvolution. | 10 |
| abstract_inverted_index.reconstruction | 29, 132 |
| abstract_inverted_index.representative | 177 |
| abstract_inverted_index.Richardson-Lucy | 66, 75, 148 |
| abstract_inverted_index.interpretability | 23, 46, 125 |
| abstract_inverted_index.resource-constrained | 200 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |