Linear Regression Model to Identify the Factors Associated with Carbon Stock in Chure Forest of Nepal Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1155/2018/1383482
Use of woody plants for greenhouse gas mitigation has led to the demand for rapid cost-effective estimation of forest carbon stock and related factors. This study aims to assess the factors associated with carbon stock in Chure forest of Nepal. The data were obtained from Department of Forest Research and Survey (DFRS) of Nepal. A multiple linear regression model and then sum contrasts were used to observe the association between variables such as stem volume, diameter at breast height, altitude, districts, number of trees per plot, and ownership of the forest. 95% confidence interval (CI) plots were drawn for comparing the adjusted carbon stocks with each of the factors and with the overall carbon stock. The linear regression showed a good fit of the model (adjusted = 83.75%) with the results that the stem volume (sv), diameter at breast height (dbh), and the number of trees per plot showed statistically significant ( value ≤ 0.05) positive association with carbon stock. The highest carbon stock was associated with sv more than 199 m 3 /ha, average dbh more than 43.3 cm/plot, and number of trees more than 20/plot, whereas the altitude, geographical location, and ownership had no statistical associations at all. The results can be of use to the government for enhancing carbon stock in Chure that supports both natural resource conservation and United Nations-Reducing Emission from Deforestation and Forest Degradation program to mitigate carbon emission issues.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2018/1383482
- http://downloads.hindawi.com/journals/scientifica/2018/1383482.pdf
- OA Status
- gold
- Cited By
- 19
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2795903803
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2795903803Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2018/1383482Digital Object Identifier
- Title
-
Linear Regression Model to Identify the Factors Associated with Carbon Stock in Chure Forest of NepalWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Ira Sharma, Sampurna KakchapatiList of authors in order
- Landing page
-
https://doi.org/10.1155/2018/1383482Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/scientifica/2018/1383482.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/scientifica/2018/1383482.pdfDirect OA link when available
- Concepts
-
Carbon stock, Linear regression, Regression, Stock (firearms), Econometrics, Regression analysis, Forestry, Geography, Statistics, Mathematics, Ecology, Biology, Climate change, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 6, 2023: 1, 2022: 4, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2795903803 |
|---|---|
| doi | https://doi.org/10.1155/2018/1383482 |
| ids.doi | https://doi.org/10.1155/2018/1383482 |
| ids.mag | 2795903803 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/29850375 |
| ids.openalex | https://openalex.org/W2795903803 |
| fwci | 1.20626868 |
| type | article |
| title | Linear Regression Model to Identify the Factors Associated with Carbon Stock in Chure Forest of Nepal |
| biblio.issue | |
| biblio.volume | 2018 |
| biblio.last_page | 8 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11880 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2309 |
| topics[0].subfield.display_name | Nature and Landscape Conservation |
| topics[0].display_name | Forest ecology and management |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T11753 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9901999831199646 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Forest Management and Policy |
| funders[0].id | https://openalex.org/F4320322692 |
| funders[0].ror | https://ror.org/0575ycz84 |
| funders[0].display_name | Prince of Songkla University |
| is_xpac | False |
| apc_list.value | 900 |
| apc_list.currency | USD |
| apc_list.value_usd | 900 |
| apc_paid.value | 900 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 900 |
| concepts[0].id | https://openalex.org/C2994081031 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7864402532577515 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1049066 |
| concepts[0].display_name | Carbon stock |
| concepts[1].id | https://openalex.org/C48921125 |
| concepts[1].level | 2 |
| concepts[1].score | 0.539885938167572 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[1].display_name | Linear regression |
| concepts[2].id | https://openalex.org/C83546350 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4590960144996643 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[2].display_name | Regression |
| concepts[3].id | https://openalex.org/C204036174 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4522061347961426 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q909380 |
| concepts[3].display_name | Stock (firearms) |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.43873798847198486 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C152877465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42837703227996826 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[5].display_name | Regression analysis |
| concepts[6].id | https://openalex.org/C97137747 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41300588846206665 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[6].display_name | Forestry |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.39915114641189575 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.359512597322464 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3017043173313141 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C18903297 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14344844222068787 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[10].display_name | Ecology |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.13933241367340088 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C132651083 |
| concepts[12].level | 2 |
| concepts[12].score | 0.07115095853805542 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7942 |
| concepts[12].display_name | Climate change |
| concepts[13].id | https://openalex.org/C166957645 |
| concepts[13].level | 1 |
| concepts[13].score | 0.06439432501792908 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[13].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/carbon-stock |
| keywords[0].score | 0.7864402532577515 |
| keywords[0].display_name | Carbon stock |
| keywords[1].id | https://openalex.org/keywords/linear-regression |
| keywords[1].score | 0.539885938167572 |
| keywords[1].display_name | Linear regression |
| keywords[2].id | https://openalex.org/keywords/regression |
| keywords[2].score | 0.4590960144996643 |
| keywords[2].display_name | Regression |
| keywords[3].id | https://openalex.org/keywords/stock |
| keywords[3].score | 0.4522061347961426 |
| keywords[3].display_name | Stock (firearms) |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.43873798847198486 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/regression-analysis |
| keywords[5].score | 0.42837703227996826 |
| keywords[5].display_name | Regression analysis |
| keywords[6].id | https://openalex.org/keywords/forestry |
| keywords[6].score | 0.41300588846206665 |
| keywords[6].display_name | Forestry |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.39915114641189575 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.359512597322464 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.3017043173313141 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/ecology |
| keywords[10].score | 0.14344844222068787 |
| keywords[10].display_name | Ecology |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.13933241367340088 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/climate-change |
| keywords[12].score | 0.07115095853805542 |
| keywords[12].display_name | Climate change |
| keywords[13].id | https://openalex.org/keywords/archaeology |
| keywords[13].score | 0.06439432501792908 |
| keywords[13].display_name | Archaeology |
| language | en |
| locations[0].id | doi:10.1155/2018/1383482 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201118 |
| locations[0].source.issn | 2090-908X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2090-908X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientifica |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://downloads.hindawi.com/journals/scientifica/2018/1383482.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientifica |
| locations[0].landing_page_url | https://doi.org/10.1155/2018/1383482 |
| locations[1].id | pmid:29850375 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientifica |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/29850375 |
| locations[2].id | pmh:oai:doaj.org/article:77cb47f63f5842e4932dad062e2ee314 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientifica, Vol 2018 (2018) |
| locations[2].landing_page_url | https://doaj.org/article/77cb47f63f5842e4932dad062e2ee314 |
| locations[3].id | pmh:oai:europepmc.org:4923443 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://europepmc.org/pmc/articles/PMC5903189 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:5903189 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | http://doi.org/10.1155/2018/1383482 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5088547090 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ira Sharma |
| authorships[0].countries | NP, TH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210149397 |
| authorships[0].affiliations[0].raw_affiliation_string | Nepal Institute of Health Sciences, Jorpati, Kathmandu, Nepal |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I131868736 |
| authorships[0].affiliations[1].raw_affiliation_string | Prince of Songkla University, Pattani Campus, Pattani, Thailand |
| authorships[0].institutions[0].id | https://openalex.org/I4210149397 |
| authorships[0].institutions[0].ror | https://ror.org/04636qj46 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210149397 |
| authorships[0].institutions[0].country_code | NP |
| authorships[0].institutions[0].display_name | Manmohan Memorial Institute of Health Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I131868736 |
| authorships[0].institutions[1].ror | https://ror.org/0575ycz84 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I131868736 |
| authorships[0].institutions[1].country_code | TH |
| authorships[0].institutions[1].display_name | Prince of Songkla University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ira Sharma |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Nepal Institute of Health Sciences, Jorpati, Kathmandu, Nepal, Prince of Songkla University, Pattani Campus, Pattani, Thailand |
| authorships[1].author.id | https://openalex.org/A5057355329 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5610-8588 |
| authorships[1].author.display_name | Sampurna Kakchapati |
| authorships[1].countries | TH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I131868736 |
| authorships[1].affiliations[0].raw_affiliation_string | Prince of Songkla University, Pattani Campus, Pattani, Thailand |
| authorships[1].institutions[0].id | https://openalex.org/I131868736 |
| authorships[1].institutions[0].ror | https://ror.org/0575ycz84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I131868736 |
| authorships[1].institutions[0].country_code | TH |
| authorships[1].institutions[0].display_name | Prince of Songkla University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Sampurna Kakchapati |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Prince of Songkla University, Pattani Campus, Pattani, Thailand |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://downloads.hindawi.com/journals/scientifica/2018/1383482.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Linear Regression Model to Identify the Factors Associated with Carbon Stock in Chure Forest of Nepal |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11880 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2309 |
| primary_topic.subfield.display_name | Nature and Landscape Conservation |
| primary_topic.display_name | Forest ecology and management |
| related_works | https://openalex.org/W2610868774, https://openalex.org/W4399767649, https://openalex.org/W2092994918, https://openalex.org/W3216594821, https://openalex.org/W2390006526, https://openalex.org/W31220157, https://openalex.org/W4363647291, https://openalex.org/W1915333409, https://openalex.org/W2393341384, https://openalex.org/W2312753042 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1155/2018/1383482 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201118 |
| best_oa_location.source.issn | 2090-908X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2090-908X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientifica |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://downloads.hindawi.com/journals/scientifica/2018/1383482.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientifica |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2018/1383482 |
| primary_location.id | doi:10.1155/2018/1383482 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201118 |
| primary_location.source.issn | 2090-908X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2090-908X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientifica |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://downloads.hindawi.com/journals/scientifica/2018/1383482.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientifica |
| primary_location.landing_page_url | https://doi.org/10.1155/2018/1383482 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2046788667, https://openalex.org/W2109347592, https://openalex.org/W2094876857, https://openalex.org/W2098937724, https://openalex.org/W2066246022, https://openalex.org/W2012260782, https://openalex.org/W2127083193, https://openalex.org/W2040120109, https://openalex.org/W2002848690, https://openalex.org/W2031766832, https://openalex.org/W2040484660, https://openalex.org/W2130458348, https://openalex.org/W2320070833, https://openalex.org/W2033525272, https://openalex.org/W1952191404 |
| referenced_works_count | 15 |
| abstract_inverted_index.3 | 178 |
| abstract_inverted_index.= | 130 |
| abstract_inverted_index.A | 54 |
| abstract_inverted_index.a | 119 |
| abstract_inverted_index.m | 177 |
| abstract_inverted_index.as | 72 |
| abstract_inverted_index.at | 76, 141, 204 |
| abstract_inverted_index.be | 209 |
| abstract_inverted_index.in | 35, 219 |
| abstract_inverted_index.no | 201 |
| abstract_inverted_index.of | 1, 17, 38, 46, 52, 82, 88, 106, 122, 148, 188, 210 |
| abstract_inverted_index.sv | 173 |
| abstract_inverted_index.to | 10, 27, 65, 212, 237 |
| abstract_inverted_index.199 | 176 |
| abstract_inverted_index.95% | 91 |
| abstract_inverted_index.The | 40, 115, 166, 206 |
| abstract_inverted_index.Use | 0 |
| abstract_inverted_index.and | 21, 49, 59, 86, 109, 145, 186, 198, 227, 233 |
| abstract_inverted_index.can | 208 |
| abstract_inverted_index.dbh | 181 |
| abstract_inverted_index.fit | 121 |
| abstract_inverted_index.for | 4, 13, 98, 215 |
| abstract_inverted_index.gas | 6 |
| abstract_inverted_index.had | 200 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.led | 9 |
| abstract_inverted_index.per | 84, 150 |
| abstract_inverted_index.sum | 61 |
| abstract_inverted_index.the | 11, 29, 67, 89, 100, 107, 111, 123, 133, 136, 146, 194, 213 |
| abstract_inverted_index.use | 211 |
| abstract_inverted_index.was | 170 |
| abstract_inverted_index.≤ | 159 |
| abstract_inverted_index.(CI) | 94 |
| abstract_inverted_index./ha, | 179 |
| abstract_inverted_index.43.3 | 184 |
| abstract_inverted_index.This | 24 |
| abstract_inverted_index.aims | 26 |
| abstract_inverted_index.all. | 205 |
| abstract_inverted_index.both | 223 |
| abstract_inverted_index.data | 41 |
| abstract_inverted_index.each | 105 |
| abstract_inverted_index.from | 44, 231 |
| abstract_inverted_index.good | 120 |
| abstract_inverted_index.more | 174, 182, 190 |
| abstract_inverted_index.plot | 151 |
| abstract_inverted_index.stem | 73, 137 |
| abstract_inverted_index.such | 71 |
| abstract_inverted_index.than | 175, 183, 191 |
| abstract_inverted_index.that | 135, 221 |
| abstract_inverted_index.then | 60 |
| abstract_inverted_index.used | 64 |
| abstract_inverted_index.were | 42, 63, 96 |
| abstract_inverted_index.with | 32, 104, 110, 132, 163, 172 |
| abstract_inverted_index.(sv), | 139 |
| abstract_inverted_index.0.05) | 160 |
| abstract_inverted_index.Chure | 36, 220 |
| abstract_inverted_index.drawn | 97 |
| abstract_inverted_index.model | 58, 124 |
| abstract_inverted_index.plot, | 85 |
| abstract_inverted_index.plots | 95 |
| abstract_inverted_index.rapid | 14 |
| abstract_inverted_index.stock | 20, 34, 169, 218 |
| abstract_inverted_index.study | 25 |
| abstract_inverted_index.trees | 83, 149, 189 |
| abstract_inverted_index.value | 158 |
| abstract_inverted_index.woody | 2 |
| abstract_inverted_index.(DFRS) | 51 |
| abstract_inverted_index.(dbh), | 144 |
| abstract_inverted_index.Forest | 47, 234 |
| abstract_inverted_index.Nepal. | 39, 53 |
| abstract_inverted_index.Survey | 50 |
| abstract_inverted_index.United | 228 |
| abstract_inverted_index.assess | 28 |
| abstract_inverted_index.breast | 77, 142 |
| abstract_inverted_index.carbon | 19, 33, 102, 113, 164, 168, 217, 239 |
| abstract_inverted_index.demand | 12 |
| abstract_inverted_index.forest | 18, 37 |
| abstract_inverted_index.height | 143 |
| abstract_inverted_index.linear | 56, 116 |
| abstract_inverted_index.number | 81, 147, 187 |
| abstract_inverted_index.plants | 3 |
| abstract_inverted_index.showed | 118, 152 |
| abstract_inverted_index.stock. | 114, 165 |
| abstract_inverted_index.stocks | 103 |
| abstract_inverted_index.volume | 138 |
| abstract_inverted_index.83.75%) | 131 |
| abstract_inverted_index.average | 180 |
| abstract_inverted_index.between | 69 |
| abstract_inverted_index.factors | 30, 108 |
| abstract_inverted_index.forest. | 90 |
| abstract_inverted_index.height, | 78 |
| abstract_inverted_index.highest | 167 |
| abstract_inverted_index.issues. | 241 |
| abstract_inverted_index.natural | 224 |
| abstract_inverted_index.observe | 66 |
| abstract_inverted_index.overall | 112 |
| abstract_inverted_index.program | 236 |
| abstract_inverted_index.related | 22 |
| abstract_inverted_index.results | 134, 207 |
| abstract_inverted_index.volume, | 74 |
| abstract_inverted_index.whereas | 193 |
| abstract_inverted_index.20/plot, | 192 |
| abstract_inverted_index.Emission | 230 |
| abstract_inverted_index.Research | 48 |
| abstract_inverted_index.adjusted | 101 |
| abstract_inverted_index.cm/plot, | 185 |
| abstract_inverted_index.diameter | 75, 140 |
| abstract_inverted_index.emission | 240 |
| abstract_inverted_index.factors. | 23 |
| abstract_inverted_index.interval | 93 |
| abstract_inverted_index.mitigate | 238 |
| abstract_inverted_index.multiple | 55 |
| abstract_inverted_index.obtained | 43 |
| abstract_inverted_index.positive | 161 |
| abstract_inverted_index.resource | 225 |
| abstract_inverted_index.supports | 222 |
| abstract_inverted_index.(adjusted | 125 |
| abstract_inverted_index.<mml:math | 126 |
| abstract_inverted_index.altitude, | 79, 195 |
| abstract_inverted_index.comparing | 99 |
| abstract_inverted_index.contrasts | 62 |
| abstract_inverted_index.enhancing | 216 |
| abstract_inverted_index.location, | 197 |
| abstract_inverted_index.ownership | 87, 199 |
| abstract_inverted_index.variables | 70 |
| abstract_inverted_index.(<mml:math | 155 |
| abstract_inverted_index.Department | 45 |
| abstract_inverted_index.associated | 31, 171 |
| abstract_inverted_index.confidence | 92 |
| abstract_inverted_index.districts, | 80 |
| abstract_inverted_index.estimation | 16 |
| abstract_inverted_index.government | 214 |
| abstract_inverted_index.greenhouse | 5 |
| abstract_inverted_index.mitigation | 7 |
| abstract_inverted_index.regression | 57, 117 |
| abstract_inverted_index.Degradation | 235 |
| abstract_inverted_index.association | 68, 162 |
| abstract_inverted_index.significant | 154 |
| abstract_inverted_index.statistical | 202 |
| abstract_inverted_index.associations | 203 |
| abstract_inverted_index.conservation | 226 |
| abstract_inverted_index.geographical | 196 |
| abstract_inverted_index.Deforestation | 232 |
| abstract_inverted_index.statistically | 153 |
| abstract_inverted_index.cost-effective | 15 |
| abstract_inverted_index.Nations-Reducing | 229 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML" | 127, 156 |
| abstract_inverted_index.id="M2"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math> | 157 |
| abstract_inverted_index.fontstyle="italic">2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> | 129 |
| abstract_inverted_index.id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mn | 128 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5088547090 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I131868736, https://openalex.org/I4210149397 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.81049911 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |