Linking Provider Specialty and Outpatient Diagnoses in Medicare Claims Data: Data Quality Implications Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1055/s-0041-1732404
Background With increasing use of real world data in observational health care research, data quality assessment of these data is equally gaining in importance. Electronic health record (EHR) or claims datasets can differ significantly in the spectrum of care covered by the data. Objective In our study, we link provider specialty with diagnoses (encoded in International Classification of Diseases) with a motivation to characterize data completeness. Methods We develop a set of measures that determine diagnostic span of a specialty (how many distinct diagnosis codes are generated by a specialty) and specialty span of a diagnosis (how many specialties diagnose a given condition). We also analyze ranked lists for both measures. As use case, we apply these measures to outpatient Medicare claims data from 2016 (3.5 billion diagnosis–specialty pairs). We analyze 82 distinct specialties present in Medicare claims (using Medicare list of specialties derived from level III Healthcare Provider Taxonomy Codes). Results A typical specialty diagnoses on average 4,046 distinct diagnosis codes. It can range from 33 codes for medical toxicology to 25,475 codes for internal medicine. Specialties with large visit volume tend to have large diagnostic span. Median specialty span of a diagnosis code is 8 specialties with a range from 1 to 82 specialties. In total, 13.5% of all observed diagnoses are generated exclusively by a single specialty. Quantitative cumulative rankings reveal that some diagnosis codes can be dominated by few specialties. Using such diagnoses in cohort or outcome definitions may thus be vulnerable to incomplete specialty coverage of a given dataset. Conclusion We propose specialty fingerprinting as a method to assess data completeness component of data quality. Datasets covering a full spectrum of care can be used to generate reference benchmark data that can quantify relative importance of a specialty in constructing diagnostic history elements of computable phenotype definitions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1055/s-0041-1732404
- http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1732404.pdf
- OA Status
- bronze
- Cited By
- 3
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3189161612
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3189161612Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1055/s-0041-1732404Digital Object Identifier
- Title
-
Linking Provider Specialty and Outpatient Diagnoses in Medicare Claims Data: Data Quality ImplicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-01Full publication date if available
- Authors
-
Vojtech Huser, Nick Williams, Craig S. MayerList of authors in order
- Landing page
-
https://doi.org/10.1055/s-0041-1732404Publisher landing page
- PDF URL
-
https://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1732404.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1732404.pdfDirect OA link when available
- Concepts
-
Specialty, Medical diagnosis, Diagnosis code, Medicine, Observational study, Family medicine, Health care, MEDLINE, Pathology, Environmental health, Population, Economics, Economic growth, Political science, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3189161612 |
|---|---|
| doi | https://doi.org/10.1055/s-0041-1732404 |
| ids.doi | https://doi.org/10.1055/s-0041-1732404 |
| ids.mag | 3189161612 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34348410 |
| ids.openalex | https://openalex.org/W3189161612 |
| fwci | 0.55143937 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000368 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Aged |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000068598 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Data Accuracy |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D038801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | International Classification of Diseases |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006278 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Medicare |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008511 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Medicine |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D010045 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Outpatients |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D014481 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | United States |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000368 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Aged |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000068598 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Data Accuracy |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D038801 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | International Classification of Diseases |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006278 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Medicare |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D008511 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Medicine |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D010045 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Outpatients |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D014481 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | United States |
| type | article |
| title | Linking Provider Specialty and Outpatient Diagnoses in Medicare Claims Data: Data Quality Implications |
| biblio.issue | 04 |
| biblio.volume | 12 |
| biblio.last_page | 736 |
| biblio.first_page | 729 |
| topics[0].id | https://openalex.org/T14400 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9950000047683716 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Medical Coding and Health Information |
| topics[1].id | https://openalex.org/T10350 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Electronic Health Records Systems |
| topics[2].id | https://openalex.org/T12246 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9916999936103821 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Chronic Disease Management Strategies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C20387591 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9249669313430786 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q930752 |
| concepts[0].display_name | Specialty |
| concepts[1].id | https://openalex.org/C534262118 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7740454077720642 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q177719 |
| concepts[1].display_name | Medical diagnosis |
| concepts[2].id | https://openalex.org/C45827449 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6609688997268677 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5270338 |
| concepts[2].display_name | Diagnosis code |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6416600942611694 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C23131810 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4918089210987091 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q818574 |
| concepts[4].display_name | Observational study |
| concepts[5].id | https://openalex.org/C512399662 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4818757474422455 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3505712 |
| concepts[5].display_name | Family medicine |
| concepts[6].id | https://openalex.org/C160735492 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46433010697364807 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[6].display_name | Health care |
| concepts[7].id | https://openalex.org/C2779473830 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43026915192604065 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1540899 |
| concepts[7].display_name | MEDLINE |
| concepts[8].id | https://openalex.org/C142724271 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1376606822013855 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[8].display_name | Pathology |
| concepts[9].id | https://openalex.org/C99454951 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[9].display_name | Environmental health |
| concepts[10].id | https://openalex.org/C2908647359 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[10].display_name | Population |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C50522688 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[12].display_name | Economic growth |
| concepts[13].id | https://openalex.org/C17744445 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[13].display_name | Political science |
| concepts[14].id | https://openalex.org/C199539241 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[14].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/specialty |
| keywords[0].score | 0.9249669313430786 |
| keywords[0].display_name | Specialty |
| keywords[1].id | https://openalex.org/keywords/medical-diagnosis |
| keywords[1].score | 0.7740454077720642 |
| keywords[1].display_name | Medical diagnosis |
| keywords[2].id | https://openalex.org/keywords/diagnosis-code |
| keywords[2].score | 0.6609688997268677 |
| keywords[2].display_name | Diagnosis code |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.6416600942611694 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/observational-study |
| keywords[4].score | 0.4918089210987091 |
| keywords[4].display_name | Observational study |
| keywords[5].id | https://openalex.org/keywords/family-medicine |
| keywords[5].score | 0.4818757474422455 |
| keywords[5].display_name | Family medicine |
| keywords[6].id | https://openalex.org/keywords/health-care |
| keywords[6].score | 0.46433010697364807 |
| keywords[6].display_name | Health care |
| keywords[7].id | https://openalex.org/keywords/medline |
| keywords[7].score | 0.43026915192604065 |
| keywords[7].display_name | MEDLINE |
| keywords[8].id | https://openalex.org/keywords/pathology |
| keywords[8].score | 0.1376606822013855 |
| keywords[8].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.1055/s-0041-1732404 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S187139995 |
| locations[0].source.issn | 1869-0327 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1869-0327 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied Clinical Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310320000 |
| locations[0].source.host_organization_name | Thieme Medical Publishers (Germany) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320000 |
| locations[0].source.host_organization_lineage_names | Thieme Medical Publishers (Germany) |
| locations[0].license | |
| locations[0].pdf_url | http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1732404.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Clinical Informatics |
| locations[0].landing_page_url | https://doi.org/10.1055/s-0041-1732404 |
| locations[1].id | pmid:34348410 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Applied clinical informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34348410 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:8354353 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Appl Clin Inform |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8354353 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5046553003 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0709-6573 |
| authorships[0].author.display_name | Vojtech Huser |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1299303238, https://openalex.org/I4210109390 |
| authorships[0].affiliations[0].raw_affiliation_string | Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States |
| authorships[0].institutions[0].id | https://openalex.org/I4210109390 |
| authorships[0].institutions[0].ror | https://ror.org/02meqm098 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238, https://openalex.org/I2800548410, https://openalex.org/I4210109390 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | National Center for Biotechnology Information |
| authorships[0].institutions[1].id | https://openalex.org/I1299303238 |
| authorships[0].institutions[1].ror | https://ror.org/01cwqze88 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | National Institutes of Health |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vojtech Huser |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States |
| authorships[1].author.id | https://openalex.org/A5102935987 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3541-5586 |
| authorships[1].author.display_name | Nick Williams |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1299303238, https://openalex.org/I4210109390 |
| authorships[1].affiliations[0].raw_affiliation_string | Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States |
| authorships[1].institutions[0].id | https://openalex.org/I4210109390 |
| authorships[1].institutions[0].ror | https://ror.org/02meqm098 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238, https://openalex.org/I2800548410, https://openalex.org/I4210109390 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | National Center for Biotechnology Information |
| authorships[1].institutions[1].id | https://openalex.org/I1299303238 |
| authorships[1].institutions[1].ror | https://ror.org/01cwqze88 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | National Institutes of Health |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nick D. Williams |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States |
| authorships[2].author.id | https://openalex.org/A5066060176 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2705-9550 |
| authorships[2].author.display_name | Craig S. Mayer |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1299303238, https://openalex.org/I4210109390 |
| authorships[2].affiliations[0].raw_affiliation_string | Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States |
| authorships[2].institutions[0].id | https://openalex.org/I4210109390 |
| authorships[2].institutions[0].ror | https://ror.org/02meqm098 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238, https://openalex.org/I2800548410, https://openalex.org/I4210109390 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | National Center for Biotechnology Information |
| authorships[2].institutions[1].id | https://openalex.org/I1299303238 |
| authorships[2].institutions[1].ror | https://ror.org/01cwqze88 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | National Institutes of Health |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Craig S. Mayer |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1732404.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Linking Provider Specialty and Outpatient Diagnoses in Medicare Claims Data: Data Quality Implications |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14400 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9950000047683716 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Medical Coding and Health Information |
| related_works | https://openalex.org/W2000811477, https://openalex.org/W2333798660, https://openalex.org/W57843728, https://openalex.org/W2802989430, https://openalex.org/W72816711, https://openalex.org/W2073015584, https://openalex.org/W2971509993, https://openalex.org/W2419506399, https://openalex.org/W2167462787, https://openalex.org/W2152097915 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1055/s-0041-1732404 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S187139995 |
| best_oa_location.source.issn | 1869-0327 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1869-0327 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Applied Clinical Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320000 |
| best_oa_location.source.host_organization_name | Thieme Medical Publishers (Germany) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320000 |
| best_oa_location.source.host_organization_lineage_names | Thieme Medical Publishers (Germany) |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1732404.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Clinical Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1055/s-0041-1732404 |
| primary_location.id | doi:10.1055/s-0041-1732404 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S187139995 |
| primary_location.source.issn | 1869-0327 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1869-0327 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied Clinical Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310320000 |
| primary_location.source.host_organization_name | Thieme Medical Publishers (Germany) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320000 |
| primary_location.source.host_organization_lineage_names | Thieme Medical Publishers (Germany) |
| primary_location.license | |
| primary_location.pdf_url | http://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0041-1732404.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Clinical Informatics |
| primary_location.landing_page_url | https://doi.org/10.1055/s-0041-1732404 |
| publication_date | 2021-08-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2891662106, https://openalex.org/W2919651002, https://openalex.org/W2954176814, https://openalex.org/W2102814299, https://openalex.org/W3107254632, https://openalex.org/W2922548803, https://openalex.org/W2123711355, https://openalex.org/W2027623762, https://openalex.org/W2883274461, https://openalex.org/W2154674126, https://openalex.org/W2518786827, https://openalex.org/W3087781820, https://openalex.org/W2768330408 |
| referenced_works_count | 13 |
| abstract_inverted_index.1 | 203 |
| abstract_inverted_index.8 | 197 |
| abstract_inverted_index.A | 153 |
| abstract_inverted_index.a | 61, 70, 79, 89, 95, 101, 193, 200, 218, 252, 261, 273, 292 |
| abstract_inverted_index.33 | 167 |
| abstract_inverted_index.82 | 132, 205 |
| abstract_inverted_index.As | 112 |
| abstract_inverted_index.In | 45, 207 |
| abstract_inverted_index.It | 163 |
| abstract_inverted_index.We | 68, 104, 130, 256 |
| abstract_inverted_index.as | 260 |
| abstract_inverted_index.be | 230, 245, 279 |
| abstract_inverted_index.by | 41, 88, 217, 232 |
| abstract_inverted_index.in | 9, 23, 35, 55, 136, 238, 294 |
| abstract_inverted_index.is | 20, 196 |
| abstract_inverted_index.of | 5, 17, 38, 58, 72, 78, 94, 142, 192, 210, 251, 268, 276, 291, 299 |
| abstract_inverted_index.on | 157 |
| abstract_inverted_index.or | 29, 240 |
| abstract_inverted_index.to | 63, 119, 172, 184, 204, 247, 263, 281 |
| abstract_inverted_index.we | 48, 115 |
| abstract_inverted_index.III | 147 |
| abstract_inverted_index.all | 211 |
| abstract_inverted_index.and | 91 |
| abstract_inverted_index.are | 86, 214 |
| abstract_inverted_index.can | 32, 164, 229, 278, 287 |
| abstract_inverted_index.few | 233 |
| abstract_inverted_index.for | 109, 169, 175 |
| abstract_inverted_index.may | 243 |
| abstract_inverted_index.our | 46 |
| abstract_inverted_index.set | 71 |
| abstract_inverted_index.the | 36, 42 |
| abstract_inverted_index.use | 4, 113 |
| abstract_inverted_index.(3.5 | 126 |
| abstract_inverted_index.(how | 81, 97 |
| abstract_inverted_index.2016 | 125 |
| abstract_inverted_index.With | 2 |
| abstract_inverted_index.also | 105 |
| abstract_inverted_index.both | 110 |
| abstract_inverted_index.care | 12, 39, 277 |
| abstract_inverted_index.code | 195 |
| abstract_inverted_index.data | 8, 14, 19, 65, 123, 265, 269, 285 |
| abstract_inverted_index.from | 124, 145, 166, 202 |
| abstract_inverted_index.full | 274 |
| abstract_inverted_index.have | 185 |
| abstract_inverted_index.link | 49 |
| abstract_inverted_index.list | 141 |
| abstract_inverted_index.many | 82, 98 |
| abstract_inverted_index.real | 6 |
| abstract_inverted_index.some | 226 |
| abstract_inverted_index.span | 77, 93, 191 |
| abstract_inverted_index.such | 236 |
| abstract_inverted_index.tend | 183 |
| abstract_inverted_index.that | 74, 225, 286 |
| abstract_inverted_index.thus | 244 |
| abstract_inverted_index.used | 280 |
| abstract_inverted_index.with | 52, 60, 179, 199 |
| abstract_inverted_index.(EHR) | 28 |
| abstract_inverted_index.13.5% | 209 |
| abstract_inverted_index.4,046 | 159 |
| abstract_inverted_index.Using | 235 |
| abstract_inverted_index.apply | 116 |
| abstract_inverted_index.case, | 114 |
| abstract_inverted_index.codes | 85, 168, 174, 228 |
| abstract_inverted_index.data. | 43 |
| abstract_inverted_index.given | 102, 253 |
| abstract_inverted_index.large | 180, 186 |
| abstract_inverted_index.level | 146 |
| abstract_inverted_index.lists | 108 |
| abstract_inverted_index.range | 165, 201 |
| abstract_inverted_index.span. | 188 |
| abstract_inverted_index.these | 18, 117 |
| abstract_inverted_index.visit | 181 |
| abstract_inverted_index.world | 7 |
| abstract_inverted_index.(using | 139 |
| abstract_inverted_index.25,475 | 173 |
| abstract_inverted_index.Median | 189 |
| abstract_inverted_index.assess | 264 |
| abstract_inverted_index.claims | 30, 122, 138 |
| abstract_inverted_index.codes. | 162 |
| abstract_inverted_index.cohort | 239 |
| abstract_inverted_index.differ | 33 |
| abstract_inverted_index.health | 11, 26 |
| abstract_inverted_index.method | 262 |
| abstract_inverted_index.ranked | 107 |
| abstract_inverted_index.record | 27 |
| abstract_inverted_index.reveal | 224 |
| abstract_inverted_index.single | 219 |
| abstract_inverted_index.study, | 47 |
| abstract_inverted_index.total, | 208 |
| abstract_inverted_index.volume | 182 |
| abstract_inverted_index.Codes). | 151 |
| abstract_inverted_index.Methods | 67 |
| abstract_inverted_index.Results | 152 |
| abstract_inverted_index.analyze | 106, 131 |
| abstract_inverted_index.average | 158 |
| abstract_inverted_index.billion | 127 |
| abstract_inverted_index.covered | 40 |
| abstract_inverted_index.derived | 144 |
| abstract_inverted_index.develop | 69 |
| abstract_inverted_index.equally | 21 |
| abstract_inverted_index.gaining | 22 |
| abstract_inverted_index.history | 297 |
| abstract_inverted_index.medical | 170 |
| abstract_inverted_index.outcome | 241 |
| abstract_inverted_index.pairs). | 129 |
| abstract_inverted_index.present | 135 |
| abstract_inverted_index.propose | 257 |
| abstract_inverted_index.quality | 15 |
| abstract_inverted_index.typical | 154 |
| abstract_inverted_index.(encoded | 54 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Datasets | 271 |
| abstract_inverted_index.Medicare | 121, 137, 140 |
| abstract_inverted_index.Provider | 149 |
| abstract_inverted_index.Taxonomy | 150 |
| abstract_inverted_index.coverage | 250 |
| abstract_inverted_index.covering | 272 |
| abstract_inverted_index.dataset. | 254 |
| abstract_inverted_index.datasets | 31 |
| abstract_inverted_index.diagnose | 100 |
| abstract_inverted_index.distinct | 83, 133, 160 |
| abstract_inverted_index.elements | 298 |
| abstract_inverted_index.generate | 282 |
| abstract_inverted_index.internal | 176 |
| abstract_inverted_index.measures | 73, 118 |
| abstract_inverted_index.observed | 212 |
| abstract_inverted_index.provider | 50 |
| abstract_inverted_index.quality. | 270 |
| abstract_inverted_index.quantify | 288 |
| abstract_inverted_index.rankings | 223 |
| abstract_inverted_index.relative | 289 |
| abstract_inverted_index.spectrum | 37, 275 |
| abstract_inverted_index.Diseases) | 59 |
| abstract_inverted_index.Objective | 44 |
| abstract_inverted_index.benchmark | 284 |
| abstract_inverted_index.component | 267 |
| abstract_inverted_index.determine | 75 |
| abstract_inverted_index.diagnoses | 53, 156, 213, 237 |
| abstract_inverted_index.diagnosis | 84, 96, 161, 194, 227 |
| abstract_inverted_index.dominated | 231 |
| abstract_inverted_index.generated | 87, 215 |
| abstract_inverted_index.measures. | 111 |
| abstract_inverted_index.medicine. | 177 |
| abstract_inverted_index.phenotype | 301 |
| abstract_inverted_index.reference | 283 |
| abstract_inverted_index.research, | 13 |
| abstract_inverted_index.specialty | 51, 80, 92, 155, 190, 249, 258, 293 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 255 |
| abstract_inverted_index.Electronic | 25 |
| abstract_inverted_index.Healthcare | 148 |
| abstract_inverted_index.assessment | 16 |
| abstract_inverted_index.computable | 300 |
| abstract_inverted_index.cumulative | 222 |
| abstract_inverted_index.diagnostic | 76, 187, 296 |
| abstract_inverted_index.importance | 290 |
| abstract_inverted_index.incomplete | 248 |
| abstract_inverted_index.increasing | 3 |
| abstract_inverted_index.motivation | 62 |
| abstract_inverted_index.outpatient | 120 |
| abstract_inverted_index.specialty) | 90 |
| abstract_inverted_index.specialty. | 220 |
| abstract_inverted_index.toxicology | 171 |
| abstract_inverted_index.vulnerable | 246 |
| abstract_inverted_index.Specialties | 178 |
| abstract_inverted_index.condition). | 103 |
| abstract_inverted_index.definitions | 242 |
| abstract_inverted_index.exclusively | 216 |
| abstract_inverted_index.importance. | 24 |
| abstract_inverted_index.specialties | 99, 134, 143, 198 |
| abstract_inverted_index.Quantitative | 221 |
| abstract_inverted_index.characterize | 64 |
| abstract_inverted_index.completeness | 266 |
| abstract_inverted_index.constructing | 295 |
| abstract_inverted_index.definitions. | 302 |
| abstract_inverted_index.specialties. | 206, 234 |
| abstract_inverted_index.International | 56 |
| abstract_inverted_index.completeness. | 66 |
| abstract_inverted_index.observational | 10 |
| abstract_inverted_index.significantly | 34 |
| abstract_inverted_index.Classification | 57 |
| abstract_inverted_index.fingerprinting | 259 |
| abstract_inverted_index.diagnosis–specialty | 128 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.75771339 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |