LISSNAS: Locality-based Iterative Search Space Shrinkage for Neural Architecture Search Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2023/86
Search spaces hallmark the advancement of Neural Architecture Search (NAS). Large and complex search spaces with versatile building operators and structures provide more opportunities to brew promising architectures, yet pose severe challenges on efficient exploration and exploitation. Subsequently, several search space shrinkage methods optimize by selecting a single sub-region that contains some well-performing networks. Small performance and efficiency gains are observed with these methods but such techniques leave room for significantly improved search performance and are ineffective at retaining architectural diversity. We propose LISSNAS, an automated algorithm that shrinks a large space into a diverse, small search space with SOTA search performance. Our approach leverages locality, the relationship between structural and performance similarity, to efficiently extract many pockets of well-performing networks. We showcase our method on an array of search spaces spanning various sizes and datasets. We accentuate the effectiveness of our shrunk spaces when used in one-shot search by achieving the best Top-1 accuracy in two different search spaces. Our method achieves a SOTA Top-1 accuracy of 77.6% in ImageNet under mobile constraints, best-in-class Kendal-Tau, architectural diversity, and search space size.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2023/86
- https://www.ijcai.org/proceedings/2023/0086.pdf
- OA Status
- gold
- Cited By
- 4
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385767850
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385767850Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2023/86Digital Object Identifier
- Title
-
LISSNAS: Locality-based Iterative Search Space Shrinkage for Neural Architecture SearchWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-01Full publication date if available
- Authors
-
Bhavna Gopal, Arjun Sridhar, Tunhou Zhang, Yiran ChenList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2023/86Publisher landing page
- PDF URL
-
https://www.ijcai.org/proceedings/2023/0086.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.ijcai.org/proceedings/2023/0086.pdfDirect OA link when available
- Concepts
-
Computer science, Locality, Space (punctuation), Architecture, Search algorithm, Artificial intelligence, Class (philosophy), Theoretical computer science, Algorithm, Geography, Philosophy, Linguistics, Archaeology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385767850 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2023/86 |
| ids.doi | https://doi.org/10.24963/ijcai.2023/86 |
| ids.openalex | https://openalex.org/W4385767850 |
| fwci | 0.72787336 |
| type | article |
| title | LISSNAS: Locality-based Iterative Search Space Shrinkage for Neural Architecture Search |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 781 |
| biblio.first_page | 773 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9991999864578247 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6859011650085449 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779808786 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6815162897109985 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6664603 |
| concepts[1].display_name | Locality |
| concepts[2].id | https://openalex.org/C2778572836 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5815867185592651 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[2].display_name | Space (punctuation) |
| concepts[3].id | https://openalex.org/C123657996 |
| concepts[3].level | 2 |
| concepts[3].score | 0.47258126735687256 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[3].display_name | Architecture |
| concepts[4].id | https://openalex.org/C125583679 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46732914447784424 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q755673 |
| concepts[4].display_name | Search algorithm |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43125060200691223 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2777212361 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42096173763275146 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[6].display_name | Class (philosophy) |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3481876850128174 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.18059372901916504 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09589338302612305 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C138885662 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[10].display_name | Philosophy |
| concepts[11].id | https://openalex.org/C41895202 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[11].display_name | Linguistics |
| concepts[12].id | https://openalex.org/C166957645 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[12].display_name | Archaeology |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6859011650085449 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/locality |
| keywords[1].score | 0.6815162897109985 |
| keywords[1].display_name | Locality |
| keywords[2].id | https://openalex.org/keywords/space |
| keywords[2].score | 0.5815867185592651 |
| keywords[2].display_name | Space (punctuation) |
| keywords[3].id | https://openalex.org/keywords/architecture |
| keywords[3].score | 0.47258126735687256 |
| keywords[3].display_name | Architecture |
| keywords[4].id | https://openalex.org/keywords/search-algorithm |
| keywords[4].score | 0.46732914447784424 |
| keywords[4].display_name | Search algorithm |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.43125060200691223 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/class |
| keywords[6].score | 0.42096173763275146 |
| keywords[6].display_name | Class (philosophy) |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.3481876850128174 |
| keywords[7].display_name | Theoretical computer science |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.18059372901916504 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.09589338302612305 |
| keywords[9].display_name | Geography |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2023/86 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.ijcai.org/proceedings/2023/0086.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2023/86 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5114073964 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bhavna Gopal |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[0].affiliations[0].raw_affiliation_string | Duke University |
| authorships[0].institutions[0].id | https://openalex.org/I170897317 |
| authorships[0].institutions[0].ror | https://ror.org/00py81415 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Duke University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bhavna Gopal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Duke University |
| authorships[1].author.id | https://openalex.org/A5021211384 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Arjun Sridhar |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[1].affiliations[0].raw_affiliation_string | Duke University |
| authorships[1].institutions[0].id | https://openalex.org/I170897317 |
| authorships[1].institutions[0].ror | https://ror.org/00py81415 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Duke University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arjun Sridhar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Duke University |
| authorships[2].author.id | https://openalex.org/A5052236334 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9590-9433 |
| authorships[2].author.display_name | Tunhou Zhang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[2].affiliations[0].raw_affiliation_string | Duke University |
| authorships[2].institutions[0].id | https://openalex.org/I170897317 |
| authorships[2].institutions[0].ror | https://ror.org/00py81415 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Duke University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tunhou Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Duke University |
| authorships[3].author.id | https://openalex.org/A5058073627 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1486-8412 |
| authorships[3].author.display_name | Yiran Chen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170897317 |
| authorships[3].affiliations[0].raw_affiliation_string | Duke University |
| authorships[3].institutions[0].id | https://openalex.org/I170897317 |
| authorships[3].institutions[0].ror | https://ror.org/00py81415 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170897317 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Duke University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yiran Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Duke University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijcai.org/proceedings/2023/0086.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LISSNAS: Locality-based Iterative Search Space Shrinkage for Neural Architecture Search |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W1556451512, https://openalex.org/W1555349535, https://openalex.org/W4234091740, https://openalex.org/W4213350282, https://openalex.org/W2230171082, https://openalex.org/W2583128298, https://openalex.org/W2022275305, https://openalex.org/W1604115909, https://openalex.org/W2369125128, https://openalex.org/W2134423494 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.24963/ijcai.2023/86 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ijcai.org/proceedings/2023/0086.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.24963/ijcai.2023/86 |
| primary_location.id | doi:10.24963/ijcai.2023/86 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.ijcai.org/proceedings/2023/0086.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2023/86 |
| publication_date | 2023-08-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3096533519, https://openalex.org/W2748513770, https://openalex.org/W2965658867, https://openalex.org/W3015042199, https://openalex.org/W2994749257, https://openalex.org/W3082366738, https://openalex.org/W2963918968, https://openalex.org/W2113207845, https://openalex.org/W2963125010, https://openalex.org/W2951245151, https://openalex.org/W3171937351, https://openalex.org/W3094801149, https://openalex.org/W2967733054, https://openalex.org/W4287595368, https://openalex.org/W3035189477, https://openalex.org/W2587014634, https://openalex.org/W3025253518, https://openalex.org/W3171964719, https://openalex.org/W3203915045, https://openalex.org/W4297459708, https://openalex.org/W2949264490, https://openalex.org/W3013310686, https://openalex.org/W2962847160, https://openalex.org/W2915992092, https://openalex.org/W2951104886, https://openalex.org/W2976301098, https://openalex.org/W4214680115, https://openalex.org/W2962746461, https://openalex.org/W4312454156, https://openalex.org/W3108099775, https://openalex.org/W2981563141, https://openalex.org/W3168130883, https://openalex.org/W3034429256, https://openalex.org/W2964081807, https://openalex.org/W4287242089 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 46, 89, 93, 163 |
| abstract_inverted_index.We | 81, 121, 136 |
| abstract_inverted_index.an | 84, 126 |
| abstract_inverted_index.at | 77 |
| abstract_inverted_index.by | 44, 149 |
| abstract_inverted_index.in | 146, 155, 169 |
| abstract_inverted_index.of | 5, 118, 128, 140, 167 |
| abstract_inverted_index.on | 32, 125 |
| abstract_inverted_index.to | 24, 113 |
| abstract_inverted_index.Our | 102, 160 |
| abstract_inverted_index.and | 11, 19, 35, 56, 74, 110, 134, 178 |
| abstract_inverted_index.are | 59, 75 |
| abstract_inverted_index.but | 64 |
| abstract_inverted_index.for | 69 |
| abstract_inverted_index.our | 123, 141 |
| abstract_inverted_index.the | 3, 106, 138, 151 |
| abstract_inverted_index.two | 156 |
| abstract_inverted_index.yet | 28 |
| abstract_inverted_index.SOTA | 99, 164 |
| abstract_inverted_index.best | 152 |
| abstract_inverted_index.brew | 25 |
| abstract_inverted_index.into | 92 |
| abstract_inverted_index.many | 116 |
| abstract_inverted_index.more | 22 |
| abstract_inverted_index.pose | 29 |
| abstract_inverted_index.room | 68 |
| abstract_inverted_index.some | 51 |
| abstract_inverted_index.such | 65 |
| abstract_inverted_index.that | 49, 87 |
| abstract_inverted_index.used | 145 |
| abstract_inverted_index.when | 144 |
| abstract_inverted_index.with | 15, 61, 98 |
| abstract_inverted_index.77.6% | 168 |
| abstract_inverted_index.Large | 10 |
| abstract_inverted_index.Small | 54 |
| abstract_inverted_index.Top-1 | 153, 165 |
| abstract_inverted_index.array | 127 |
| abstract_inverted_index.gains | 58 |
| abstract_inverted_index.large | 90 |
| abstract_inverted_index.leave | 67 |
| abstract_inverted_index.size. | 181 |
| abstract_inverted_index.sizes | 133 |
| abstract_inverted_index.small | 95 |
| abstract_inverted_index.space | 40, 91, 97, 180 |
| abstract_inverted_index.these | 62 |
| abstract_inverted_index.under | 171 |
| abstract_inverted_index.(NAS). | 9 |
| abstract_inverted_index.Neural | 6 |
| abstract_inverted_index.Search | 0, 8 |
| abstract_inverted_index.method | 124, 161 |
| abstract_inverted_index.mobile | 172 |
| abstract_inverted_index.search | 13, 39, 72, 96, 100, 129, 148, 158, 179 |
| abstract_inverted_index.severe | 30 |
| abstract_inverted_index.shrunk | 142 |
| abstract_inverted_index.single | 47 |
| abstract_inverted_index.spaces | 1, 14, 130, 143 |
| abstract_inverted_index.between | 108 |
| abstract_inverted_index.complex | 12 |
| abstract_inverted_index.extract | 115 |
| abstract_inverted_index.methods | 42, 63 |
| abstract_inverted_index.pockets | 117 |
| abstract_inverted_index.propose | 82 |
| abstract_inverted_index.provide | 21 |
| abstract_inverted_index.several | 38 |
| abstract_inverted_index.shrinks | 88 |
| abstract_inverted_index.spaces. | 159 |
| abstract_inverted_index.various | 132 |
| abstract_inverted_index.ImageNet | 170 |
| abstract_inverted_index.LISSNAS, | 83 |
| abstract_inverted_index.accuracy | 154, 166 |
| abstract_inverted_index.achieves | 162 |
| abstract_inverted_index.approach | 103 |
| abstract_inverted_index.building | 17 |
| abstract_inverted_index.contains | 50 |
| abstract_inverted_index.diverse, | 94 |
| abstract_inverted_index.hallmark | 2 |
| abstract_inverted_index.improved | 71 |
| abstract_inverted_index.observed | 60 |
| abstract_inverted_index.one-shot | 147 |
| abstract_inverted_index.optimize | 43 |
| abstract_inverted_index.showcase | 122 |
| abstract_inverted_index.spanning | 131 |
| abstract_inverted_index.achieving | 150 |
| abstract_inverted_index.algorithm | 86 |
| abstract_inverted_index.automated | 85 |
| abstract_inverted_index.datasets. | 135 |
| abstract_inverted_index.different | 157 |
| abstract_inverted_index.efficient | 33 |
| abstract_inverted_index.leverages | 104 |
| abstract_inverted_index.locality, | 105 |
| abstract_inverted_index.networks. | 53, 120 |
| abstract_inverted_index.operators | 18 |
| abstract_inverted_index.promising | 26 |
| abstract_inverted_index.retaining | 78 |
| abstract_inverted_index.selecting | 45 |
| abstract_inverted_index.shrinkage | 41 |
| abstract_inverted_index.versatile | 16 |
| abstract_inverted_index.accentuate | 137 |
| abstract_inverted_index.challenges | 31 |
| abstract_inverted_index.diversity, | 177 |
| abstract_inverted_index.diversity. | 80 |
| abstract_inverted_index.efficiency | 57 |
| abstract_inverted_index.structural | 109 |
| abstract_inverted_index.structures | 20 |
| abstract_inverted_index.sub-region | 48 |
| abstract_inverted_index.techniques | 66 |
| abstract_inverted_index.Kendal-Tau, | 175 |
| abstract_inverted_index.advancement | 4 |
| abstract_inverted_index.efficiently | 114 |
| abstract_inverted_index.exploration | 34 |
| abstract_inverted_index.ineffective | 76 |
| abstract_inverted_index.performance | 55, 73, 111 |
| abstract_inverted_index.similarity, | 112 |
| abstract_inverted_index.Architecture | 7 |
| abstract_inverted_index.constraints, | 173 |
| abstract_inverted_index.performance. | 101 |
| abstract_inverted_index.relationship | 107 |
| abstract_inverted_index.Subsequently, | 37 |
| abstract_inverted_index.architectural | 79, 176 |
| abstract_inverted_index.best-in-class | 174 |
| abstract_inverted_index.effectiveness | 139 |
| abstract_inverted_index.exploitation. | 36 |
| abstract_inverted_index.opportunities | 23 |
| abstract_inverted_index.significantly | 70 |
| abstract_inverted_index.architectures, | 27 |
| abstract_inverted_index.well-performing | 52, 119 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.68655893 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |