Listening to Affected Communities to Define Extreme Speech: Dataset and Experiments Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2022.findings-acl.87
Building on current work on multilingual hate speech (e.g., Ousidhoum et al. (2019)) and hate speech reduction (e.g., Sap et al. (2020)), we present XTREMESPEECH, a new hate speech dataset containing 20,297 social media passages from Brazil, Germany, India and Kenya. The key novelty is that we directly involve the affected communities in collecting and annotating the data – as opposed to giving companies and governments control over defining and combatting hate speech. This inclusive approach results in datasets more representative of actually occurring online speech and is likely to facilitate the removal of the social media content that marginalized communities view as causing the most harm. Based on XTREMESPEECH, we establish novel tasks with accompanying baselines, provide evidence that cross-country training is generally not feasible due to cultural differences between countries and perform an interpretability analysis of BERT’s predictions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2022.findings-acl.87
- https://aclanthology.org/2022.findings-acl.87.pdf
- OA Status
- hybrid
- Cited By
- 9
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4285287896
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4285287896Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2022.findings-acl.87Digital Object Identifier
- Title
-
Listening to Affected Communities to Define Extreme Speech: Dataset and ExperimentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Antonis Maronikolakis, Axel Wisiorek, Leah Nann, Haris Jabbar, Sahana Udupa, Hinrich SchuetzeList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2022.findings-acl.87Publisher landing page
- PDF URL
-
https://aclanthology.org/2022.findings-acl.87.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2022.findings-acl.87.pdfDirect OA link when available
- Concepts
-
Novelty, Interpretability, Social media, Computer science, Active listening, Harm, Key (lock), Voice activity detection, Natural language processing, Speech recognition, Speech processing, Artificial intelligence, World Wide Web, Psychology, Computer security, Social psychology, CommunicationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1, 2023: 3, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4285287896 |
|---|---|
| doi | https://doi.org/10.18653/v1/2022.findings-acl.87 |
| ids.doi | https://doi.org/10.18653/v1/2022.findings-acl.87 |
| ids.openalex | https://openalex.org/W4285287896 |
| fwci | 1.05799536 |
| type | article |
| title | Listening to Affected Communities to Define Extreme Speech: Dataset and Experiments |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1104 |
| biblio.first_page | 1089 |
| topics[0].id | https://openalex.org/T12262 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Hate Speech and Cyberbullying Detection |
| topics[1].id | https://openalex.org/T10557 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9513999819755554 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3315 |
| topics[1].subfield.display_name | Communication |
| topics[1].display_name | Social Media and Politics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778738651 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7643414735794067 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q16546687 |
| concepts[0].display_name | Novelty |
| concepts[1].id | https://openalex.org/C2781067378 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7262383103370667 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[1].display_name | Interpretability |
| concepts[2].id | https://openalex.org/C518677369 |
| concepts[2].level | 2 |
| concepts[2].score | 0.640559196472168 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[2].display_name | Social media |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6007996797561646 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C177291462 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5947468876838684 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q423038 |
| concepts[4].display_name | Active listening |
| concepts[5].id | https://openalex.org/C2777363581 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5887780785560608 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q15098235 |
| concepts[5].display_name | Harm |
| concepts[6].id | https://openalex.org/C26517878 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4965694546699524 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[6].display_name | Key (lock) |
| concepts[7].id | https://openalex.org/C204201278 |
| concepts[7].level | 3 |
| concepts[7].score | 0.41679060459136963 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1332614 |
| concepts[7].display_name | Voice activity detection |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33641517162323 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C28490314 |
| concepts[9].level | 1 |
| concepts[9].score | 0.31456294655799866 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[9].display_name | Speech recognition |
| concepts[10].id | https://openalex.org/C61328038 |
| concepts[10].level | 2 |
| concepts[10].score | 0.29883095622062683 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3358061 |
| concepts[10].display_name | Speech processing |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2641744613647461 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C136764020 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2190670371055603 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[12].display_name | World Wide Web |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.20909297466278076 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C38652104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1489538848400116 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[14].display_name | Computer security |
| concepts[15].id | https://openalex.org/C77805123 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1292986273765564 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[15].display_name | Social psychology |
| concepts[16].id | https://openalex.org/C46312422 |
| concepts[16].level | 1 |
| concepts[16].score | 0.09455594420433044 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11024 |
| concepts[16].display_name | Communication |
| keywords[0].id | https://openalex.org/keywords/novelty |
| keywords[0].score | 0.7643414735794067 |
| keywords[0].display_name | Novelty |
| keywords[1].id | https://openalex.org/keywords/interpretability |
| keywords[1].score | 0.7262383103370667 |
| keywords[1].display_name | Interpretability |
| keywords[2].id | https://openalex.org/keywords/social-media |
| keywords[2].score | 0.640559196472168 |
| keywords[2].display_name | Social media |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6007996797561646 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/active-listening |
| keywords[4].score | 0.5947468876838684 |
| keywords[4].display_name | Active listening |
| keywords[5].id | https://openalex.org/keywords/harm |
| keywords[5].score | 0.5887780785560608 |
| keywords[5].display_name | Harm |
| keywords[6].id | https://openalex.org/keywords/key |
| keywords[6].score | 0.4965694546699524 |
| keywords[6].display_name | Key (lock) |
| keywords[7].id | https://openalex.org/keywords/voice-activity-detection |
| keywords[7].score | 0.41679060459136963 |
| keywords[7].display_name | Voice activity detection |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.33641517162323 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/speech-recognition |
| keywords[9].score | 0.31456294655799866 |
| keywords[9].display_name | Speech recognition |
| keywords[10].id | https://openalex.org/keywords/speech-processing |
| keywords[10].score | 0.29883095622062683 |
| keywords[10].display_name | Speech processing |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2641744613647461 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/world-wide-web |
| keywords[12].score | 0.2190670371055603 |
| keywords[12].display_name | World Wide Web |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.20909297466278076 |
| keywords[13].display_name | Psychology |
| keywords[14].id | https://openalex.org/keywords/computer-security |
| keywords[14].score | 0.1489538848400116 |
| keywords[14].display_name | Computer security |
| keywords[15].id | https://openalex.org/keywords/social-psychology |
| keywords[15].score | 0.1292986273765564 |
| keywords[15].display_name | Social psychology |
| keywords[16].id | https://openalex.org/keywords/communication |
| keywords[16].score | 0.09455594420433044 |
| keywords[16].display_name | Communication |
| language | en |
| locations[0].id | doi:10.18653/v1/2022.findings-acl.87 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4363605144 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Findings of the Association for Computational Linguistics: ACL 2022 |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2022.findings-acl.87.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Findings of the Association for Computational Linguistics: ACL 2022 |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2022.findings-acl.87 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061951550 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-2463-2588 |
| authorships[0].author.display_name | Antonis Maronikolakis |
| authorships[0].affiliations[0].raw_affiliation_string | CIS, Center for Information and Language Processing |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Antonis Maronikolakis |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | CIS, Center for Information and Language Processing |
| authorships[1].author.id | https://openalex.org/A5089005570 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6058-0460 |
| authorships[1].author.display_name | Axel Wisiorek |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4403928240 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Digital Humanities |
| authorships[1].affiliations[1].raw_affiliation_string | CIS, Center for Information and Language Processing |
| authorships[1].institutions[0].id | https://openalex.org/I4403928240 |
| authorships[1].institutions[0].ror | https://ror.org/02a0c6v45 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210129917, https://openalex.org/I4403928240, https://openalex.org/I4403928305 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Centre for Digital Humanities |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Axel Wisiorek |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | CIS, Center for Information and Language Processing, Center for Digital Humanities |
| authorships[2].author.id | https://openalex.org/A5026761883 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Leah Nann |
| authorships[2].countries | DE, HU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210164602, https://openalex.org/I8204097 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Social and Cultural Anthropology LMU Munich |
| authorships[2].institutions[0].id | https://openalex.org/I8204097 |
| authorships[2].institutions[0].ror | https://ror.org/05591te55 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I8204097 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Ludwig-Maximilians-Universität München |
| authorships[2].institutions[1].id | https://openalex.org/I4210164602 |
| authorships[2].institutions[1].ror | https://ror.org/05t2njg22 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210131266, https://openalex.org/I4210164602, https://openalex.org/I7597260 |
| authorships[2].institutions[1].country_code | HU |
| authorships[2].institutions[1].display_name | Institute of Ethnology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Leah Nann |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Social and Cultural Anthropology LMU Munich |
| authorships[3].author.id | https://openalex.org/A5016754082 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Haris Jabbar |
| authorships[3].affiliations[0].raw_affiliation_string | CIS, Center for Information and Language Processing |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Haris Jabbar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CIS, Center for Information and Language Processing |
| authorships[4].author.id | https://openalex.org/A5089986506 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3647-9570 |
| authorships[4].author.display_name | Sahana Udupa |
| authorships[4].countries | DE, HU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210164602, https://openalex.org/I8204097 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Social and Cultural Anthropology LMU Munich |
| authorships[4].institutions[0].id | https://openalex.org/I8204097 |
| authorships[4].institutions[0].ror | https://ror.org/05591te55 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I8204097 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Ludwig-Maximilians-Universität München |
| authorships[4].institutions[1].id | https://openalex.org/I4210164602 |
| authorships[4].institutions[1].ror | https://ror.org/05t2njg22 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210131266, https://openalex.org/I4210164602, https://openalex.org/I7597260 |
| authorships[4].institutions[1].country_code | HU |
| authorships[4].institutions[1].display_name | Institute of Ethnology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sahana Udupa |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Social and Cultural Anthropology LMU Munich |
| authorships[5].author.id | https://openalex.org/A5088559117 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Hinrich Schuetze |
| authorships[5].affiliations[0].raw_affiliation_string | CIS, Center for Information and Language Processing |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hinrich Schuetze |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | CIS, Center for Information and Language Processing |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2022.findings-acl.87.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Listening to Affected Communities to Define Extreme Speech: Dataset and Experiments |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12262 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Hate Speech and Cyberbullying Detection |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W4361193272, https://openalex.org/W2963326959, https://openalex.org/W4388685194, https://openalex.org/W4312407344, https://openalex.org/W2894289927 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2022.findings-acl.87 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4363605144 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Findings of the Association for Computational Linguistics: ACL 2022 |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2022.findings-acl.87.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Findings of the Association for Computational Linguistics: ACL 2022 |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2022.findings-acl.87 |
| primary_location.id | doi:10.18653/v1/2022.findings-acl.87 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4363605144 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Findings of the Association for Computational Linguistics: ACL 2022 |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2022.findings-acl.87.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Findings of the Association for Computational Linguistics: ACL 2022 |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2022.findings-acl.87 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3153611199, https://openalex.org/W1806855443, https://openalex.org/W2951286828, https://openalex.org/W3100941475, https://openalex.org/W3086798673, https://openalex.org/W2040383901, https://openalex.org/W2973159684, https://openalex.org/W3167384116, https://openalex.org/W3173380736, https://openalex.org/W3104209339, https://openalex.org/W2337508919, https://openalex.org/W3166455001, https://openalex.org/W3175487198, https://openalex.org/W2473555522, https://openalex.org/W2963088995, https://openalex.org/W3035390927, https://openalex.org/W2563826943, https://openalex.org/W3031484690, https://openalex.org/W3098998028, https://openalex.org/W3035310383, https://openalex.org/W3155681715, https://openalex.org/W4289669978, https://openalex.org/W3023550547, https://openalex.org/W4287779168, https://openalex.org/W3098173943, https://openalex.org/W2785615365, https://openalex.org/W136732505, https://openalex.org/W4287866999, https://openalex.org/W3102641573, https://openalex.org/W2963943967, https://openalex.org/W3001629137, https://openalex.org/W2595653137, https://openalex.org/W3034937117, https://openalex.org/W4288083800, https://openalex.org/W2911227954, https://openalex.org/W2946681640, https://openalex.org/W3171896931, https://openalex.org/W3104239954, https://openalex.org/W2766715434, https://openalex.org/W4300849630, https://openalex.org/W2949678053, https://openalex.org/W2282821441, https://openalex.org/W3098075008, https://openalex.org/W3133499716, https://openalex.org/W2977873485, https://openalex.org/W2971150411, https://openalex.org/W3174882277, https://openalex.org/W2967877328, https://openalex.org/W3204690763, https://openalex.org/W3154048149, https://openalex.org/W3105226597, https://openalex.org/W4294214983, https://openalex.org/W4247280291, https://openalex.org/W2983342160, https://openalex.org/W2972735048 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 25 |
| abstract_inverted_index.an | 134 |
| abstract_inverted_index.as | 59, 102 |
| abstract_inverted_index.et | 10, 19 |
| abstract_inverted_index.in | 52, 77 |
| abstract_inverted_index.is | 44, 87, 122 |
| abstract_inverted_index.of | 81, 93, 137 |
| abstract_inverted_index.on | 1, 4, 108 |
| abstract_inverted_index.to | 61, 89, 127 |
| abstract_inverted_index.we | 22, 46, 110 |
| abstract_inverted_index.Sap | 18 |
| abstract_inverted_index.The | 41 |
| abstract_inverted_index.al. | 11, 20 |
| abstract_inverted_index.and | 13, 39, 54, 64, 69, 86, 132 |
| abstract_inverted_index.due | 126 |
| abstract_inverted_index.key | 42 |
| abstract_inverted_index.new | 26 |
| abstract_inverted_index.not | 124 |
| abstract_inverted_index.the | 49, 56, 91, 94, 104 |
| abstract_inverted_index.– | 58 |
| abstract_inverted_index.This | 73 |
| abstract_inverted_index.data | 57 |
| abstract_inverted_index.from | 35 |
| abstract_inverted_index.hate | 6, 14, 27, 71 |
| abstract_inverted_index.more | 79 |
| abstract_inverted_index.most | 105 |
| abstract_inverted_index.over | 67 |
| abstract_inverted_index.that | 45, 98, 119 |
| abstract_inverted_index.view | 101 |
| abstract_inverted_index.with | 114 |
| abstract_inverted_index.work | 3 |
| abstract_inverted_index.Based | 107 |
| abstract_inverted_index.India | 38 |
| abstract_inverted_index.harm. | 106 |
| abstract_inverted_index.media | 33, 96 |
| abstract_inverted_index.novel | 112 |
| abstract_inverted_index.tasks | 113 |
| abstract_inverted_index.(e.g., | 8, 17 |
| abstract_inverted_index.20,297 | 31 |
| abstract_inverted_index.Kenya. | 40 |
| abstract_inverted_index.giving | 62 |
| abstract_inverted_index.likely | 88 |
| abstract_inverted_index.online | 84 |
| abstract_inverted_index.social | 32, 95 |
| abstract_inverted_index.speech | 7, 15, 28, 85 |
| abstract_inverted_index.(2019)) | 12 |
| abstract_inverted_index.Brazil, | 36 |
| abstract_inverted_index.between | 130 |
| abstract_inverted_index.causing | 103 |
| abstract_inverted_index.content | 97 |
| abstract_inverted_index.control | 66 |
| abstract_inverted_index.current | 2 |
| abstract_inverted_index.dataset | 29 |
| abstract_inverted_index.involve | 48 |
| abstract_inverted_index.novelty | 43 |
| abstract_inverted_index.opposed | 60 |
| abstract_inverted_index.perform | 133 |
| abstract_inverted_index.present | 23 |
| abstract_inverted_index.provide | 117 |
| abstract_inverted_index.removal | 92 |
| abstract_inverted_index.results | 76 |
| abstract_inverted_index.speech. | 72 |
| abstract_inverted_index.(2020)), | 21 |
| abstract_inverted_index.BERT’s | 138 |
| abstract_inverted_index.Building | 0 |
| abstract_inverted_index.Germany, | 37 |
| abstract_inverted_index.actually | 82 |
| abstract_inverted_index.affected | 50 |
| abstract_inverted_index.analysis | 136 |
| abstract_inverted_index.approach | 75 |
| abstract_inverted_index.cultural | 128 |
| abstract_inverted_index.datasets | 78 |
| abstract_inverted_index.defining | 68 |
| abstract_inverted_index.directly | 47 |
| abstract_inverted_index.evidence | 118 |
| abstract_inverted_index.feasible | 125 |
| abstract_inverted_index.passages | 34 |
| abstract_inverted_index.training | 121 |
| abstract_inverted_index.Ousidhoum | 9 |
| abstract_inverted_index.companies | 63 |
| abstract_inverted_index.countries | 131 |
| abstract_inverted_index.establish | 111 |
| abstract_inverted_index.generally | 123 |
| abstract_inverted_index.inclusive | 74 |
| abstract_inverted_index.occurring | 83 |
| abstract_inverted_index.reduction | 16 |
| abstract_inverted_index.annotating | 55 |
| abstract_inverted_index.baselines, | 116 |
| abstract_inverted_index.collecting | 53 |
| abstract_inverted_index.combatting | 70 |
| abstract_inverted_index.containing | 30 |
| abstract_inverted_index.facilitate | 90 |
| abstract_inverted_index.communities | 51, 100 |
| abstract_inverted_index.differences | 129 |
| abstract_inverted_index.governments | 65 |
| abstract_inverted_index.accompanying | 115 |
| abstract_inverted_index.marginalized | 99 |
| abstract_inverted_index.multilingual | 5 |
| abstract_inverted_index.predictions. | 139 |
| abstract_inverted_index.XTREMESPEECH, | 24, 109 |
| abstract_inverted_index.cross-country | 120 |
| abstract_inverted_index.representative | 80 |
| abstract_inverted_index.interpretability | 135 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.76926808 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |