Lithium-ion battery RUL prediction based on optimized VMD-SSA-PatchTST algorithm Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-11934-7
Accurate prediction of lithium-ion batteries' remaining useful life (RUL) is critical for system reliability and safety. This study proposes a novel forecasting framework that fuses modal decomposition with the advanced PatchTST model. Initially, the Spearman correlation coefficient is employed to identify features strongly associated with battery capacity. The Variational Mode Decomposition (VMD) method is then used to break down the raw capacity sequence into a set of intrinsic mode functions. To enhance decomposition quality, the Whale Optimization Algorithm (WOA) optimizes the number of modes K and penalty factor α by minimizing mean envelope entropy. The selected features and decomposed components are subsequently input into a PatchTST network, whose hyperparameters are tuned via the Sparrow Search Algorithm (SSA), to predict battery RUL. Experimental validation on the NASA Battery dataset and NASA Randomized Battery Usage Dataset demonstrates that the proposed WOA-VMD-SSA-PatchTST model consistently outperforms baseline models, including CNN, GRU and PatchTST, achieving superior prediction accuracy and robustness.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-11934-7
- https://www.nature.com/articles/s41598-025-11934-7.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412601651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412601651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-11934-7Digital Object Identifier
- Title
-
Lithium-ion battery RUL prediction based on optimized VMD-SSA-PatchTST algorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-23Full publication date if available
- Authors
-
Pei Tang, Zhen Qiu, Zhongran Yao, Jiahao Pan, D. Cheng, Xiaoyong Gu, Changcheng SunList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-11934-7Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-11934-7.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-11934-7.pdfDirect OA link when available
- Concepts
-
Battery (electricity), Computer science, Lithium (medication), Lithium-ion battery, Ion, Algorithm, Chemistry, Physics, Medicine, Thermodynamics, Internal medicine, Organic chemistry, Power (physics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412601651 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-11934-7 |
| ids.doi | https://doi.org/10.1038/s41598-025-11934-7 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40702103 |
| ids.openalex | https://openalex.org/W4412601651 |
| fwci | 2.17737573 |
| type | article |
| title | Lithium-ion battery RUL prediction based on optimized VMD-SSA-PatchTST algorithm |
| awards[0].id | https://openalex.org/G8780030139 |
| awards[0].funder_id | https://openalex.org/F4320335440 |
| awards[0].display_name | |
| awards[0].funder_award_id | Grant No. 23KJB430038 |
| awards[0].funder_display_name | Natural Science Research of Jiangsu Higher Education Institutions of China |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 26824 |
| biblio.first_page | 26824 |
| topics[0].id | https://openalex.org/T10663 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Advanced Battery Technologies Research |
| topics[1].id | https://openalex.org/T13717 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9513999819755554 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Algorithms and Applications |
| topics[2].id | https://openalex.org/T14444 |
| topics[2].field.id | https://openalex.org/fields/21 |
| topics[2].field.display_name | Energy |
| topics[2].score | 0.92330002784729 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2102 |
| topics[2].subfield.display_name | Energy Engineering and Power Technology |
| topics[2].display_name | Power Systems and Renewable Energy |
| funders[0].id | https://openalex.org/F4320335440 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Research of Jiangsu Higher Education Institutions of China |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C555008776 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5795939564704895 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[0].display_name | Battery (electricity) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5175535082817078 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778541603 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5064159631729126 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q152763 |
| concepts[2].display_name | Lithium (medication) |
| concepts[3].id | https://openalex.org/C2779197387 |
| concepts[3].level | 4 |
| concepts[3].score | 0.4772322475910187 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2822895 |
| concepts[3].display_name | Lithium-ion battery |
| concepts[4].id | https://openalex.org/C145148216 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4405743479728699 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q36496 |
| concepts[4].display_name | Ion |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4032290279865265 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C185592680 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2014019787311554 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[6].display_name | Chemistry |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1442987024784088 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.11288544535636902 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C97355855 |
| concepts[9].level | 1 |
| concepts[9].score | 0.062091559171676636 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[9].display_name | Thermodynamics |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.05915972590446472 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C178790620 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[11].display_name | Organic chemistry |
| concepts[12].id | https://openalex.org/C163258240 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[12].display_name | Power (physics) |
| keywords[0].id | https://openalex.org/keywords/battery |
| keywords[0].score | 0.5795939564704895 |
| keywords[0].display_name | Battery (electricity) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5175535082817078 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/lithium |
| keywords[2].score | 0.5064159631729126 |
| keywords[2].display_name | Lithium (medication) |
| keywords[3].id | https://openalex.org/keywords/lithium-ion-battery |
| keywords[3].score | 0.4772322475910187 |
| keywords[3].display_name | Lithium-ion battery |
| keywords[4].id | https://openalex.org/keywords/ion |
| keywords[4].score | 0.4405743479728699 |
| keywords[4].display_name | Ion |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.4032290279865265 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/chemistry |
| keywords[6].score | 0.2014019787311554 |
| keywords[6].display_name | Chemistry |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.1442987024784088 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.11288544535636902 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/thermodynamics |
| keywords[9].score | 0.062091559171676636 |
| keywords[9].display_name | Thermodynamics |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.05915972590446472 |
| keywords[10].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-11934-7 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-11934-7.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-11934-7 |
| locations[1].id | pmid:40702103 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40702103 |
| locations[2].id | pmh:oai:doaj.org/article:c7775e8bb1344f48886dd1c243cfd033 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-18 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/c7775e8bb1344f48886dd1c243cfd033 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12287278 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12287278 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5090437448 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1176-0086 |
| authorships[0].author.display_name | Pei Tang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210157719 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China. |
| authorships[0].institutions[0].id | https://openalex.org/I4210157719 |
| authorships[0].institutions[0].ror | https://ror.org/04y8njc86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210157719 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Yancheng Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pei Tang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China. |
| authorships[1].author.id | https://openalex.org/A5043069764 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6219-7158 |
| authorships[1].author.display_name | Zhen Qiu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210157719 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China. [email protected]. |
| authorships[1].institutions[0].id | https://openalex.org/I4210157719 |
| authorships[1].institutions[0].ror | https://ror.org/04y8njc86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210157719 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Yancheng Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zetao Qiu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China. [email protected]. |
| authorships[2].author.id | https://openalex.org/A5059365426 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhongran Yao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I77631543 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Automobile and Traffic Engineering, Wuxi Institute of Technology, Wuxi, 214121, China. |
| authorships[2].institutions[0].id | https://openalex.org/I77631543 |
| authorships[2].institutions[0].ror | https://ror.org/00ab95029 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I77631543 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Wuxi Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhongran Yao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Automobile and Traffic Engineering, Wuxi Institute of Technology, Wuxi, 214121, China. |
| authorships[3].author.id | https://openalex.org/A5046174250 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9724-6645 |
| authorships[3].author.display_name | Jiahao Pan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210157719 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China. |
| authorships[3].institutions[0].id | https://openalex.org/I4210157719 |
| authorships[3].institutions[0].ror | https://ror.org/04y8njc86 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210157719 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Yancheng Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiahao Pan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China. |
| authorships[4].author.id | https://openalex.org/A5112321297 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | D. Cheng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210157719 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China. |
| authorships[4].institutions[0].id | https://openalex.org/I4210157719 |
| authorships[4].institutions[0].ror | https://ror.org/04y8njc86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210157719 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Yancheng Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dashuai Cheng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China. |
| authorships[5].author.id | https://openalex.org/A5065460771 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8054-8778 |
| authorships[5].author.display_name | Xiaoyong Gu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I77631543 |
| authorships[5].affiliations[0].raw_affiliation_string | Engineering Research Center of New Energy Vehicle Energy Saving and Battery Safety, Wuxi Institute of Technology, Wuxi, 214121, China. |
| authorships[5].institutions[0].id | https://openalex.org/I77631543 |
| authorships[5].institutions[0].ror | https://ror.org/00ab95029 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I77631543 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Wuxi Institute of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiaoyong Gu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Engineering Research Center of New Energy Vehicle Energy Saving and Battery Safety, Wuxi Institute of Technology, Wuxi, 214121, China. |
| authorships[6].author.id | https://openalex.org/A5004168956 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6578-6364 |
| authorships[6].author.display_name | Changcheng Sun |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210157719 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China. |
| authorships[6].institutions[0].id | https://openalex.org/I4210157719 |
| authorships[6].institutions[0].ror | https://ror.org/04y8njc86 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210157719 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Yancheng Institute of Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Changcheng Sun |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-11934-7.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Lithium-ion battery RUL prediction based on optimized VMD-SSA-PatchTST algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10663 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Advanced Battery Technologies Research |
| related_works | https://openalex.org/W2995074223, https://openalex.org/W2357719166, https://openalex.org/W4224246090, https://openalex.org/W3165173190, https://openalex.org/W2080384327, https://openalex.org/W2159458361, https://openalex.org/W3161330592, https://openalex.org/W2274723115, https://openalex.org/W3201198192, https://openalex.org/W3089487084 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-11934-7 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-11934-7.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-11934-7 |
| primary_location.id | doi:10.1038/s41598-025-11934-7 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-11934-7.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-11934-7 |
| publication_date | 2025-07-23 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4401660926, https://openalex.org/W4404214931, https://openalex.org/W4407757863, https://openalex.org/W4408798003, https://openalex.org/W4408032682, https://openalex.org/W4407767226, https://openalex.org/W4296332648, https://openalex.org/W4296106788, https://openalex.org/W4408266410, https://openalex.org/W4404629926, https://openalex.org/W3196731549, https://openalex.org/W4309192820, https://openalex.org/W2790625295, https://openalex.org/W2612210564, https://openalex.org/W4213025374, https://openalex.org/W4213019189, https://openalex.org/W4310416691, https://openalex.org/W2950735432, https://openalex.org/W4390727419, https://openalex.org/W2805076621, https://openalex.org/W3041016892, https://openalex.org/W4317598144, https://openalex.org/W4292635991, https://openalex.org/W4393123820, https://openalex.org/W4399558006, https://openalex.org/W2883515020, https://openalex.org/W2403749440, https://openalex.org/W3169854270, https://openalex.org/W3102947106, https://openalex.org/W4213099919, https://openalex.org/W4226085666 |
| referenced_works_count | 31 |
| abstract_inverted_index.K | 84 |
| abstract_inverted_index.a | 19, 64, 104 |
| abstract_inverted_index.To | 70 |
| abstract_inverted_index.by | 89 |
| abstract_inverted_index.is | 9, 37, 53 |
| abstract_inverted_index.of | 2, 66, 82 |
| abstract_inverted_index.on | 123 |
| abstract_inverted_index.to | 39, 56, 117 |
| abstract_inverted_index.α | 88 |
| abstract_inverted_index.GRU | 146 |
| abstract_inverted_index.The | 47, 94 |
| abstract_inverted_index.and | 14, 85, 97, 128, 147, 153 |
| abstract_inverted_index.are | 100, 109 |
| abstract_inverted_index.for | 11 |
| abstract_inverted_index.raw | 60 |
| abstract_inverted_index.set | 65 |
| abstract_inverted_index.the | 28, 33, 59, 74, 80, 112, 124, 136 |
| abstract_inverted_index.via | 111 |
| abstract_inverted_index.CNN, | 145 |
| abstract_inverted_index.Mode | 49 |
| abstract_inverted_index.NASA | 125, 129 |
| abstract_inverted_index.RUL. | 120 |
| abstract_inverted_index.This | 16 |
| abstract_inverted_index.down | 58 |
| abstract_inverted_index.into | 63, 103 |
| abstract_inverted_index.life | 7 |
| abstract_inverted_index.mean | 91 |
| abstract_inverted_index.mode | 68 |
| abstract_inverted_index.that | 23, 135 |
| abstract_inverted_index.then | 54 |
| abstract_inverted_index.used | 55 |
| abstract_inverted_index.with | 27, 44 |
| abstract_inverted_index.(RUL) | 8 |
| abstract_inverted_index.(VMD) | 51 |
| abstract_inverted_index.(WOA) | 78 |
| abstract_inverted_index.Usage | 132 |
| abstract_inverted_index.Whale | 75 |
| abstract_inverted_index.break | 57 |
| abstract_inverted_index.fuses | 24 |
| abstract_inverted_index.input | 102 |
| abstract_inverted_index.modal | 25 |
| abstract_inverted_index.model | 139 |
| abstract_inverted_index.modes | 83 |
| abstract_inverted_index.novel | 20 |
| abstract_inverted_index.study | 17 |
| abstract_inverted_index.tuned | 110 |
| abstract_inverted_index.whose | 107 |
| abstract_inverted_index.(SSA), | 116 |
| abstract_inverted_index.Search | 114 |
| abstract_inverted_index.factor | 87 |
| abstract_inverted_index.method | 52 |
| abstract_inverted_index.model. | 31 |
| abstract_inverted_index.number | 81 |
| abstract_inverted_index.system | 12 |
| abstract_inverted_index.useful | 6 |
| abstract_inverted_index.Battery | 126, 131 |
| abstract_inverted_index.Dataset | 133 |
| abstract_inverted_index.Sparrow | 113 |
| abstract_inverted_index.battery | 45, 119 |
| abstract_inverted_index.dataset | 127 |
| abstract_inverted_index.enhance | 71 |
| abstract_inverted_index.models, | 143 |
| abstract_inverted_index.penalty | 86 |
| abstract_inverted_index.predict | 118 |
| abstract_inverted_index.safety. | 15 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.PatchTST | 30, 105 |
| abstract_inverted_index.Spearman | 34 |
| abstract_inverted_index.accuracy | 152 |
| abstract_inverted_index.advanced | 29 |
| abstract_inverted_index.baseline | 142 |
| abstract_inverted_index.capacity | 61 |
| abstract_inverted_index.critical | 10 |
| abstract_inverted_index.employed | 38 |
| abstract_inverted_index.entropy. | 93 |
| abstract_inverted_index.envelope | 92 |
| abstract_inverted_index.features | 41, 96 |
| abstract_inverted_index.identify | 40 |
| abstract_inverted_index.network, | 106 |
| abstract_inverted_index.proposed | 137 |
| abstract_inverted_index.proposes | 18 |
| abstract_inverted_index.quality, | 73 |
| abstract_inverted_index.selected | 95 |
| abstract_inverted_index.sequence | 62 |
| abstract_inverted_index.strongly | 42 |
| abstract_inverted_index.superior | 150 |
| abstract_inverted_index.Algorithm | 77, 115 |
| abstract_inverted_index.PatchTST, | 148 |
| abstract_inverted_index.achieving | 149 |
| abstract_inverted_index.capacity. | 46 |
| abstract_inverted_index.framework | 22 |
| abstract_inverted_index.including | 144 |
| abstract_inverted_index.intrinsic | 67 |
| abstract_inverted_index.optimizes | 79 |
| abstract_inverted_index.remaining | 5 |
| abstract_inverted_index.Initially, | 32 |
| abstract_inverted_index.Randomized | 130 |
| abstract_inverted_index.associated | 43 |
| abstract_inverted_index.batteries' | 4 |
| abstract_inverted_index.components | 99 |
| abstract_inverted_index.decomposed | 98 |
| abstract_inverted_index.functions. | 69 |
| abstract_inverted_index.minimizing | 90 |
| abstract_inverted_index.prediction | 1, 151 |
| abstract_inverted_index.validation | 122 |
| abstract_inverted_index.Variational | 48 |
| abstract_inverted_index.coefficient | 36 |
| abstract_inverted_index.correlation | 35 |
| abstract_inverted_index.forecasting | 21 |
| abstract_inverted_index.lithium-ion | 3 |
| abstract_inverted_index.outperforms | 141 |
| abstract_inverted_index.reliability | 13 |
| abstract_inverted_index.robustness. | 154 |
| abstract_inverted_index.Experimental | 121 |
| abstract_inverted_index.Optimization | 76 |
| abstract_inverted_index.consistently | 140 |
| abstract_inverted_index.demonstrates | 134 |
| abstract_inverted_index.subsequently | 101 |
| abstract_inverted_index.Decomposition | 50 |
| abstract_inverted_index.decomposition | 26, 72 |
| abstract_inverted_index.hyperparameters | 108 |
| abstract_inverted_index.WOA-VMD-SSA-PatchTST | 138 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.80727559 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |