LLaMEA-BO: A Large Language Model Evolutionary Algorithm for Automatically Generating Bayesian Optimization Algorithms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.21034
Bayesian optimization (BO) is a powerful class of algorithms for optimizing expensive black-box functions, but designing effective BO algorithms remains a manual, expertise-driven task. Recent advancements in Large Language Models (LLMs) have opened new avenues for automating scientific discovery, including the automatic design of optimization algorithms. While prior work has used LLMs within optimization loops or to generate non-BO algorithms, we tackle a new challenge: Using LLMs to automatically generate full BO algorithm code. Our framework uses an evolution strategy to guide an LLM in generating Python code that preserves the key components of BO algorithms: An initial design, a surrogate model, and an acquisition function. The LLM is prompted to produce multiple candidate algorithms, which are evaluated on the established Black-Box Optimization Benchmarking (BBOB) test suite from the COmparing Continuous Optimizers (COCO) platform. Based on their performance, top candidates are selected, combined, and mutated via controlled prompt variations, enabling iterative refinement. Despite no additional fine-tuning, the LLM-generated algorithms outperform state-of-the-art BO baselines in 19 (out of 24) BBOB functions in dimension 5 and generalize well to higher dimensions, and different tasks (from the Bayesmark framework). This work demonstrates that LLMs can serve as algorithmic co-designers, offering a new paradigm for automating BO development and accelerating the discovery of novel algorithmic combinations. The source code is provided at https://github.com/Ewendawi/LLaMEA-BO.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.21034
- https://arxiv.org/pdf/2505.21034
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415036730
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415036730Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.21034Digital Object Identifier
- Title
-
LLaMEA-BO: A Large Language Model Evolutionary Algorithm for Automatically Generating Bayesian Optimization AlgorithmsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-27Full publication date if available
- Authors
-
Wenhu Li, Niki van Stein, Thomas Bäck, Elena RaponiList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.21034Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.21034Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.21034Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415036730 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.21034 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.21034 |
| ids.openalex | https://openalex.org/W4415036730 |
| fwci | |
| type | preprint |
| title | LLaMEA-BO: A Large Language Model Evolutionary Algorithm for Automatically Generating Bayesian Optimization Algorithms |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12031 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9422000050544739 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech and dialogue systems |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9251000285148621 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9164000153541565 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.21034 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.21034 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.21034 |
| locations[1].id | doi:10.48550/arxiv.2505.21034 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.21034 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5035083368 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7795-5003 |
| authorships[0].author.display_name | Wenhu Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Wenhu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5111231256 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Niki van Stein |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | van Stein, Niki |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5062646838 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6768-1478 |
| authorships[2].author.display_name | Thomas Bäck |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bäck, Thomas |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5089662417 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6841-7409 |
| authorships[3].author.display_name | Elena Raponi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Raponi, Elena |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.21034 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LLaMEA-BO: A Large Language Model Evolutionary Algorithm for Automatically Generating Bayesian Optimization Algorithms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12031 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9422000050544739 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech and dialogue systems |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.21034 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.21034 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.21034 |
| primary_location.id | pmh:oai:arXiv.org:2505.21034 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.21034 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.21034 |
| publication_date | 2025-05-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 172 |
| abstract_inverted_index.a | 4, 20, 62, 99, 197 |
| abstract_inverted_index.19 | 164 |
| abstract_inverted_index.An | 96 |
| abstract_inverted_index.BO | 17, 71, 94, 161, 202 |
| abstract_inverted_index.an | 77, 82, 103 |
| abstract_inverted_index.as | 193 |
| abstract_inverted_index.at | 217 |
| abstract_inverted_index.in | 26, 84, 163, 170 |
| abstract_inverted_index.is | 3, 108, 215 |
| abstract_inverted_index.no | 153 |
| abstract_inverted_index.of | 7, 43, 93, 166, 208 |
| abstract_inverted_index.on | 118, 135 |
| abstract_inverted_index.or | 55 |
| abstract_inverted_index.to | 56, 67, 80, 110, 176 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.24) | 167 |
| abstract_inverted_index.LLM | 83, 107 |
| abstract_inverted_index.Our | 74 |
| abstract_inverted_index.The | 106, 212 |
| abstract_inverted_index.and | 102, 143, 173, 179, 204 |
| abstract_inverted_index.are | 116, 140 |
| abstract_inverted_index.but | 14 |
| abstract_inverted_index.can | 191 |
| abstract_inverted_index.for | 9, 35, 200 |
| abstract_inverted_index.has | 49 |
| abstract_inverted_index.key | 91 |
| abstract_inverted_index.new | 33, 63, 198 |
| abstract_inverted_index.the | 40, 90, 119, 128, 156, 183, 206 |
| abstract_inverted_index.top | 138 |
| abstract_inverted_index.via | 145 |
| abstract_inverted_index.(BO) | 2 |
| abstract_inverted_index.(out | 165 |
| abstract_inverted_index.BBOB | 168 |
| abstract_inverted_index.LLMs | 51, 66, 190 |
| abstract_inverted_index.This | 186 |
| abstract_inverted_index.code | 87, 214 |
| abstract_inverted_index.from | 127 |
| abstract_inverted_index.full | 70 |
| abstract_inverted_index.have | 31 |
| abstract_inverted_index.test | 125 |
| abstract_inverted_index.that | 88, 189 |
| abstract_inverted_index.used | 50 |
| abstract_inverted_index.uses | 76 |
| abstract_inverted_index.well | 175 |
| abstract_inverted_index.work | 48, 187 |
| abstract_inverted_index.(from | 182 |
| abstract_inverted_index.Based | 134 |
| abstract_inverted_index.Large | 27 |
| abstract_inverted_index.Using | 65 |
| abstract_inverted_index.While | 46 |
| abstract_inverted_index.class | 6 |
| abstract_inverted_index.code. | 73 |
| abstract_inverted_index.guide | 81 |
| abstract_inverted_index.loops | 54 |
| abstract_inverted_index.novel | 209 |
| abstract_inverted_index.prior | 47 |
| abstract_inverted_index.serve | 192 |
| abstract_inverted_index.suite | 126 |
| abstract_inverted_index.task. | 23 |
| abstract_inverted_index.tasks | 181 |
| abstract_inverted_index.their | 136 |
| abstract_inverted_index.which | 115 |
| abstract_inverted_index.(BBOB) | 124 |
| abstract_inverted_index.(COCO) | 132 |
| abstract_inverted_index.(LLMs) | 30 |
| abstract_inverted_index.Models | 29 |
| abstract_inverted_index.Python | 86 |
| abstract_inverted_index.Recent | 24 |
| abstract_inverted_index.design | 42 |
| abstract_inverted_index.higher | 177 |
| abstract_inverted_index.model, | 101 |
| abstract_inverted_index.non-BO | 58 |
| abstract_inverted_index.opened | 32 |
| abstract_inverted_index.prompt | 147 |
| abstract_inverted_index.source | 213 |
| abstract_inverted_index.tackle | 61 |
| abstract_inverted_index.within | 52 |
| abstract_inverted_index.Despite | 152 |
| abstract_inverted_index.avenues | 34 |
| abstract_inverted_index.design, | 98 |
| abstract_inverted_index.initial | 97 |
| abstract_inverted_index.manual, | 21 |
| abstract_inverted_index.mutated | 144 |
| abstract_inverted_index.produce | 111 |
| abstract_inverted_index.remains | 19 |
| abstract_inverted_index.Bayesian | 0 |
| abstract_inverted_index.Language | 28 |
| abstract_inverted_index.enabling | 149 |
| abstract_inverted_index.generate | 57, 69 |
| abstract_inverted_index.multiple | 112 |
| abstract_inverted_index.offering | 196 |
| abstract_inverted_index.paradigm | 199 |
| abstract_inverted_index.powerful | 5 |
| abstract_inverted_index.prompted | 109 |
| abstract_inverted_index.provided | 216 |
| abstract_inverted_index.strategy | 79 |
| abstract_inverted_index.Bayesmark | 184 |
| abstract_inverted_index.Black-Box | 121 |
| abstract_inverted_index.COmparing | 129 |
| abstract_inverted_index.algorithm | 72 |
| abstract_inverted_index.automatic | 41 |
| abstract_inverted_index.baselines | 162 |
| abstract_inverted_index.black-box | 12 |
| abstract_inverted_index.candidate | 113 |
| abstract_inverted_index.combined, | 142 |
| abstract_inverted_index.designing | 15 |
| abstract_inverted_index.different | 180 |
| abstract_inverted_index.dimension | 171 |
| abstract_inverted_index.discovery | 207 |
| abstract_inverted_index.effective | 16 |
| abstract_inverted_index.evaluated | 117 |
| abstract_inverted_index.evolution | 78 |
| abstract_inverted_index.expensive | 11 |
| abstract_inverted_index.framework | 75 |
| abstract_inverted_index.function. | 105 |
| abstract_inverted_index.functions | 169 |
| abstract_inverted_index.including | 39 |
| abstract_inverted_index.iterative | 150 |
| abstract_inverted_index.platform. | 133 |
| abstract_inverted_index.preserves | 89 |
| abstract_inverted_index.selected, | 141 |
| abstract_inverted_index.surrogate | 100 |
| abstract_inverted_index.Continuous | 130 |
| abstract_inverted_index.Optimizers | 131 |
| abstract_inverted_index.additional | 154 |
| abstract_inverted_index.algorithms | 8, 18, 158 |
| abstract_inverted_index.automating | 36, 201 |
| abstract_inverted_index.candidates | 139 |
| abstract_inverted_index.challenge: | 64 |
| abstract_inverted_index.components | 92 |
| abstract_inverted_index.controlled | 146 |
| abstract_inverted_index.discovery, | 38 |
| abstract_inverted_index.functions, | 13 |
| abstract_inverted_index.generalize | 174 |
| abstract_inverted_index.generating | 85 |
| abstract_inverted_index.optimizing | 10 |
| abstract_inverted_index.outperform | 159 |
| abstract_inverted_index.scientific | 37 |
| abstract_inverted_index.acquisition | 104 |
| abstract_inverted_index.algorithmic | 194, 210 |
| abstract_inverted_index.algorithms, | 59, 114 |
| abstract_inverted_index.algorithms. | 45 |
| abstract_inverted_index.algorithms: | 95 |
| abstract_inverted_index.development | 203 |
| abstract_inverted_index.dimensions, | 178 |
| abstract_inverted_index.established | 120 |
| abstract_inverted_index.framework). | 185 |
| abstract_inverted_index.refinement. | 151 |
| abstract_inverted_index.variations, | 148 |
| abstract_inverted_index.Benchmarking | 123 |
| abstract_inverted_index.Optimization | 122 |
| abstract_inverted_index.accelerating | 205 |
| abstract_inverted_index.advancements | 25 |
| abstract_inverted_index.demonstrates | 188 |
| abstract_inverted_index.fine-tuning, | 155 |
| abstract_inverted_index.optimization | 1, 44, 53 |
| abstract_inverted_index.performance, | 137 |
| abstract_inverted_index.LLM-generated | 157 |
| abstract_inverted_index.automatically | 68 |
| abstract_inverted_index.co-designers, | 195 |
| abstract_inverted_index.combinations. | 211 |
| abstract_inverted_index.expertise-driven | 22 |
| abstract_inverted_index.state-of-the-art | 160 |
| abstract_inverted_index.https://github.com/Ewendawi/LLaMEA-BO. | 218 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |