LLM-Explorer: A Plug-in Reinforcement Learning Policy Exploration Enhancement Driven by Large Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.15293
Policy exploration is critical in reinforcement learning (RL), where existing approaches include greedy, Gaussian process, etc. However, these approaches utilize preset stochastic processes and are indiscriminately applied in all kinds of RL tasks without considering task-specific features that influence policy exploration. Moreover, during RL training, the evolution of such stochastic processes is rigid, which typically only incorporates a decay in the variance, failing to adjust flexibly according to the agent's real-time learning status. Inspired by the analyzing and reasoning capability of large language models (LLMs), we design LLM-Explorer to adaptively generate task-specific exploration strategies with LLMs, enhancing the policy exploration in RL. In our design, we sample the learning trajectory of the agent during the RL training in a given task and prompt the LLM to analyze the agent's current policy learning status and then generate a probability distribution for future policy exploration. Updating the probability distribution periodically, we derive a stochastic process specialized for the particular task and dynamically adjusted to adapt to the learning process. Our design is a plug-in module compatible with various widely applied RL algorithms, including the DQN series, DDPG, TD3, and any possible variants developed based on them. Through extensive experiments on the Atari and MuJoCo benchmarks, we demonstrate LLM-Explorer's capability to enhance RL policy exploration, achieving an average performance improvement up to 37.27%. Our code is open-source at https://github.com/tsinghua-fib-lab/LLM-Explorer for reproducibility.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.15293
- https://arxiv.org/pdf/2505.15293
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415025005
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415025005Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.15293Digital Object Identifier
- Title
-
LLM-Explorer: A Plug-in Reinforcement Learning Policy Exploration Enhancement Driven by Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-21Full publication date if available
- Authors
-
Qianyue Hao, Yong Sang Song, Qingmin Liao, Jian Yuan, Yijia CaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.15293Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.15293Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.15293Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415025005 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.15293 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.15293 |
| ids.openalex | https://openalex.org/W4415025005 |
| fwci | |
| type | preprint |
| title | LLM-Explorer: A Plug-in Reinforcement Learning Policy Exploration Enhancement Driven by Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.6302000284194946 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T10260 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.559499979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Software Engineering Research |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.5534999966621399 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.15293 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.15293 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.15293 |
| locations[1].id | doi:10.48550/arxiv.2505.15293 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.15293 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5051274227 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7109-3588 |
| authorships[0].author.display_name | Qianyue Hao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao, Qianyue |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5004406086 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7115-4021 |
| authorships[1].author.display_name | Yong Sang Song |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Song, Yiwen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009239895 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7509-3964 |
| authorships[2].author.display_name | Qingmin Liao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liao, Qingmin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100347994 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9734-6056 |
| authorships[3].author.display_name | Jian Yuan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yuan, Jian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5043383546 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9365-6452 |
| authorships[4].author.display_name | Yijia Cao |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Li, Yong |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.15293 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LLM-Explorer: A Plug-in Reinforcement Learning Policy Exploration Enhancement Driven by Large Language Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.6302000284194946 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.15293 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.15293 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.15293 |
| primary_location.id | pmh:oai:arXiv.org:2505.15293 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.15293 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.15293 |
| publication_date | 2025-05-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 57, 118, 136, 150, 170 |
| abstract_inverted_index.In | 102 |
| abstract_inverted_index.RL | 31, 43, 115, 178, 209 |
| abstract_inverted_index.an | 213 |
| abstract_inverted_index.at | 224 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.in | 4, 27, 59, 100, 117 |
| abstract_inverted_index.is | 2, 51, 169, 222 |
| abstract_inverted_index.of | 30, 47, 80, 110 |
| abstract_inverted_index.on | 192, 197 |
| abstract_inverted_index.to | 63, 67, 88, 125, 161, 163, 207, 218 |
| abstract_inverted_index.up | 217 |
| abstract_inverted_index.we | 85, 105, 148, 203 |
| abstract_inverted_index.DQN | 182 |
| abstract_inverted_index.LLM | 124 |
| abstract_inverted_index.Our | 167, 220 |
| abstract_inverted_index.RL. | 101 |
| abstract_inverted_index.all | 28 |
| abstract_inverted_index.and | 23, 77, 121, 133, 158, 186, 200 |
| abstract_inverted_index.any | 187 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.for | 139, 154, 226 |
| abstract_inverted_index.our | 103 |
| abstract_inverted_index.the | 45, 60, 68, 75, 97, 107, 111, 114, 123, 127, 144, 155, 164, 181, 198 |
| abstract_inverted_index.TD3, | 185 |
| abstract_inverted_index.code | 221 |
| abstract_inverted_index.etc. | 15 |
| abstract_inverted_index.only | 55 |
| abstract_inverted_index.such | 48 |
| abstract_inverted_index.task | 120, 157 |
| abstract_inverted_index.that | 37 |
| abstract_inverted_index.then | 134 |
| abstract_inverted_index.with | 94, 174 |
| abstract_inverted_index.(RL), | 7 |
| abstract_inverted_index.Atari | 199 |
| abstract_inverted_index.DDPG, | 184 |
| abstract_inverted_index.LLMs, | 95 |
| abstract_inverted_index.adapt | 162 |
| abstract_inverted_index.agent | 112 |
| abstract_inverted_index.based | 191 |
| abstract_inverted_index.decay | 58 |
| abstract_inverted_index.given | 119 |
| abstract_inverted_index.kinds | 29 |
| abstract_inverted_index.large | 81 |
| abstract_inverted_index.tasks | 32 |
| abstract_inverted_index.them. | 193 |
| abstract_inverted_index.these | 17 |
| abstract_inverted_index.where | 8 |
| abstract_inverted_index.which | 53 |
| abstract_inverted_index.MuJoCo | 201 |
| abstract_inverted_index.Policy | 0 |
| abstract_inverted_index.adjust | 64 |
| abstract_inverted_index.derive | 149 |
| abstract_inverted_index.design | 86, 168 |
| abstract_inverted_index.during | 42, 113 |
| abstract_inverted_index.future | 140 |
| abstract_inverted_index.models | 83 |
| abstract_inverted_index.module | 172 |
| abstract_inverted_index.policy | 39, 98, 130, 141, 210 |
| abstract_inverted_index.preset | 20 |
| abstract_inverted_index.prompt | 122 |
| abstract_inverted_index.rigid, | 52 |
| abstract_inverted_index.sample | 106 |
| abstract_inverted_index.status | 132 |
| abstract_inverted_index.widely | 176 |
| abstract_inverted_index.(LLMs), | 84 |
| abstract_inverted_index.37.27%. | 219 |
| abstract_inverted_index.Through | 194 |
| abstract_inverted_index.agent's | 69, 128 |
| abstract_inverted_index.analyze | 126 |
| abstract_inverted_index.applied | 26, 177 |
| abstract_inverted_index.average | 214 |
| abstract_inverted_index.current | 129 |
| abstract_inverted_index.design, | 104 |
| abstract_inverted_index.enhance | 208 |
| abstract_inverted_index.failing | 62 |
| abstract_inverted_index.greedy, | 12 |
| abstract_inverted_index.include | 11 |
| abstract_inverted_index.plug-in | 171 |
| abstract_inverted_index.process | 152 |
| abstract_inverted_index.series, | 183 |
| abstract_inverted_index.status. | 72 |
| abstract_inverted_index.utilize | 19 |
| abstract_inverted_index.various | 175 |
| abstract_inverted_index.without | 33 |
| abstract_inverted_index.Gaussian | 13 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.Inspired | 73 |
| abstract_inverted_index.Updating | 143 |
| abstract_inverted_index.adjusted | 160 |
| abstract_inverted_index.critical | 3 |
| abstract_inverted_index.existing | 9 |
| abstract_inverted_index.features | 36 |
| abstract_inverted_index.flexibly | 65 |
| abstract_inverted_index.generate | 90, 135 |
| abstract_inverted_index.language | 82 |
| abstract_inverted_index.learning | 6, 71, 108, 131, 165 |
| abstract_inverted_index.possible | 188 |
| abstract_inverted_index.process, | 14 |
| abstract_inverted_index.process. | 166 |
| abstract_inverted_index.training | 116 |
| abstract_inverted_index.variants | 189 |
| abstract_inverted_index.Moreover, | 41 |
| abstract_inverted_index.according | 66 |
| abstract_inverted_index.achieving | 212 |
| abstract_inverted_index.analyzing | 76 |
| abstract_inverted_index.developed | 190 |
| abstract_inverted_index.enhancing | 96 |
| abstract_inverted_index.evolution | 46 |
| abstract_inverted_index.extensive | 195 |
| abstract_inverted_index.including | 180 |
| abstract_inverted_index.influence | 38 |
| abstract_inverted_index.processes | 22, 50 |
| abstract_inverted_index.real-time | 70 |
| abstract_inverted_index.reasoning | 78 |
| abstract_inverted_index.training, | 44 |
| abstract_inverted_index.typically | 54 |
| abstract_inverted_index.variance, | 61 |
| abstract_inverted_index.adaptively | 89 |
| abstract_inverted_index.approaches | 10, 18 |
| abstract_inverted_index.capability | 79, 206 |
| abstract_inverted_index.compatible | 173 |
| abstract_inverted_index.particular | 156 |
| abstract_inverted_index.stochastic | 21, 49, 151 |
| abstract_inverted_index.strategies | 93 |
| abstract_inverted_index.trajectory | 109 |
| abstract_inverted_index.algorithms, | 179 |
| abstract_inverted_index.benchmarks, | 202 |
| abstract_inverted_index.considering | 34 |
| abstract_inverted_index.demonstrate | 204 |
| abstract_inverted_index.dynamically | 159 |
| abstract_inverted_index.experiments | 196 |
| abstract_inverted_index.exploration | 1, 92, 99 |
| abstract_inverted_index.improvement | 216 |
| abstract_inverted_index.open-source | 223 |
| abstract_inverted_index.performance | 215 |
| abstract_inverted_index.probability | 137, 145 |
| abstract_inverted_index.specialized | 153 |
| abstract_inverted_index.LLM-Explorer | 87 |
| abstract_inverted_index.distribution | 138, 146 |
| abstract_inverted_index.exploration, | 211 |
| abstract_inverted_index.exploration. | 40, 142 |
| abstract_inverted_index.incorporates | 56 |
| abstract_inverted_index.periodically, | 147 |
| abstract_inverted_index.reinforcement | 5 |
| abstract_inverted_index.task-specific | 35, 91 |
| abstract_inverted_index.LLM-Explorer's | 205 |
| abstract_inverted_index.indiscriminately | 25 |
| abstract_inverted_index.reproducibility. | 227 |
| abstract_inverted_index.https://github.com/tsinghua-fib-lab/LLM-Explorer | 225 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |