LLM one-shot style transfer for Authorship Attribution and Verification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.13302
Computational stylometry analyzes writing style through quantitative patterns in text, supporting applications from forensic tasks such as identity linking and plagiarism detection to literary attribution in the humanities. Supervised and contrastive approaches rely on data with spurious correlations and often confuse style with topic. Despite their natural use in AI-generated text detection, the CLM pre-training of modern LLMs has been scarcely leveraged for general authorship problems. We propose a novel unsupervised approach based on this extensive pre-training and the in-context learning capabilities of LLMs, employing the log-probabilities of an LLM to measure style transferability from one text to another. Our method significantly outperforms LLM prompting approaches of comparable scale and achieves higher accuracy than contrastively trained baselines when controlling for topical correlations. Moreover, performance scales fairly consistently with the size of the base model and, in the case of authorship verification, with an additional mechanism that increases test-time computation; enabling flexible trade-offs between computational cost and accuracy.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.13302
- https://arxiv.org/pdf/2510.13302
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415275674
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415275674Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.13302Digital Object Identifier
- Title
-
LLM one-shot style transfer for Authorship Attribution and VerificationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-15Full publication date if available
- Authors
-
Pablo Miralles-González, Javier Huertas‐Tato, Alejandro Martín, David CamachoList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.13302Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.13302Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.13302Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415275674 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.13302 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.13302 |
| ids.openalex | https://openalex.org/W4415275674 |
| fwci | |
| type | preprint |
| title | LLM one-shot style transfer for Authorship Attribution and Verification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12380 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9922000169754028 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Authorship Attribution and Profiling |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9517999887466431 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9466999769210815 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.13302 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.13302 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.13302 |
| locations[1].id | doi:10.48550/arxiv.2510.13302 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.13302 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5115817684 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pablo Miralles-González |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Miralles-González, Pablo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5040465870 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4127-5505 |
| authorships[1].author.display_name | Javier Huertas‐Tato |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huertas-Tato, Javier |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101979842 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0800-7632 |
| authorships[2].author.display_name | Alejandro Martín |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Martín, Alejandro |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025314362 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5051-3475 |
| authorships[3].author.display_name | David Camacho |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Camacho, David |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.13302 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-17T00:00:00 |
| display_name | LLM one-shot style transfer for Authorship Attribution and Verification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12380 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9922000169754028 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Authorship Attribution and Profiling |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.13302 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.13302 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.13302 |
| primary_location.id | pmh:oai:arXiv.org:2510.13302 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.13302 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.13302 |
| publication_date | 2025-10-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 68 |
| abstract_inverted_index.We | 66 |
| abstract_inverted_index.an | 88, 142 |
| abstract_inverted_index.as | 16 |
| abstract_inverted_index.in | 8, 25, 48, 135 |
| abstract_inverted_index.of | 55, 82, 87, 106, 130, 138 |
| abstract_inverted_index.on | 33, 73 |
| abstract_inverted_index.to | 22, 90, 97 |
| abstract_inverted_index.CLM | 53 |
| abstract_inverted_index.LLM | 89, 103 |
| abstract_inverted_index.Our | 99 |
| abstract_inverted_index.and | 19, 29, 38, 77, 109, 155 |
| abstract_inverted_index.for | 62, 119 |
| abstract_inverted_index.has | 58 |
| abstract_inverted_index.one | 95 |
| abstract_inverted_index.the | 26, 52, 78, 85, 128, 131, 136 |
| abstract_inverted_index.use | 47 |
| abstract_inverted_index.LLMs | 57 |
| abstract_inverted_index.and, | 134 |
| abstract_inverted_index.base | 132 |
| abstract_inverted_index.been | 59 |
| abstract_inverted_index.case | 137 |
| abstract_inverted_index.cost | 154 |
| abstract_inverted_index.data | 34 |
| abstract_inverted_index.from | 12, 94 |
| abstract_inverted_index.rely | 32 |
| abstract_inverted_index.size | 129 |
| abstract_inverted_index.such | 15 |
| abstract_inverted_index.text | 50, 96 |
| abstract_inverted_index.than | 113 |
| abstract_inverted_index.that | 145 |
| abstract_inverted_index.this | 74 |
| abstract_inverted_index.when | 117 |
| abstract_inverted_index.with | 35, 42, 127, 141 |
| abstract_inverted_index.LLMs, | 83 |
| abstract_inverted_index.based | 72 |
| abstract_inverted_index.model | 133 |
| abstract_inverted_index.novel | 69 |
| abstract_inverted_index.often | 39 |
| abstract_inverted_index.scale | 108 |
| abstract_inverted_index.style | 4, 41, 92 |
| abstract_inverted_index.tasks | 14 |
| abstract_inverted_index.text, | 9 |
| abstract_inverted_index.their | 45 |
| abstract_inverted_index.fairly | 125 |
| abstract_inverted_index.higher | 111 |
| abstract_inverted_index.method | 100 |
| abstract_inverted_index.modern | 56 |
| abstract_inverted_index.scales | 124 |
| abstract_inverted_index.topic. | 43 |
| abstract_inverted_index.Despite | 44 |
| abstract_inverted_index.between | 152 |
| abstract_inverted_index.confuse | 40 |
| abstract_inverted_index.general | 63 |
| abstract_inverted_index.linking | 18 |
| abstract_inverted_index.measure | 91 |
| abstract_inverted_index.natural | 46 |
| abstract_inverted_index.propose | 67 |
| abstract_inverted_index.through | 5 |
| abstract_inverted_index.topical | 120 |
| abstract_inverted_index.trained | 115 |
| abstract_inverted_index.writing | 3 |
| abstract_inverted_index.accuracy | 112 |
| abstract_inverted_index.achieves | 110 |
| abstract_inverted_index.analyzes | 2 |
| abstract_inverted_index.another. | 98 |
| abstract_inverted_index.approach | 71 |
| abstract_inverted_index.enabling | 149 |
| abstract_inverted_index.flexible | 150 |
| abstract_inverted_index.forensic | 13 |
| abstract_inverted_index.identity | 17 |
| abstract_inverted_index.learning | 80 |
| abstract_inverted_index.literary | 23 |
| abstract_inverted_index.patterns | 7 |
| abstract_inverted_index.scarcely | 60 |
| abstract_inverted_index.spurious | 36 |
| abstract_inverted_index.Moreover, | 122 |
| abstract_inverted_index.accuracy. | 156 |
| abstract_inverted_index.baselines | 116 |
| abstract_inverted_index.detection | 21 |
| abstract_inverted_index.employing | 84 |
| abstract_inverted_index.extensive | 75 |
| abstract_inverted_index.increases | 146 |
| abstract_inverted_index.leveraged | 61 |
| abstract_inverted_index.mechanism | 144 |
| abstract_inverted_index.problems. | 65 |
| abstract_inverted_index.prompting | 104 |
| abstract_inverted_index.test-time | 147 |
| abstract_inverted_index.Supervised | 28 |
| abstract_inverted_index.additional | 143 |
| abstract_inverted_index.approaches | 31, 105 |
| abstract_inverted_index.authorship | 64, 139 |
| abstract_inverted_index.comparable | 107 |
| abstract_inverted_index.detection, | 51 |
| abstract_inverted_index.in-context | 79 |
| abstract_inverted_index.plagiarism | 20 |
| abstract_inverted_index.stylometry | 1 |
| abstract_inverted_index.supporting | 10 |
| abstract_inverted_index.trade-offs | 151 |
| abstract_inverted_index.attribution | 24 |
| abstract_inverted_index.contrastive | 30 |
| abstract_inverted_index.controlling | 118 |
| abstract_inverted_index.humanities. | 27 |
| abstract_inverted_index.outperforms | 102 |
| abstract_inverted_index.performance | 123 |
| abstract_inverted_index.AI-generated | 49 |
| abstract_inverted_index.applications | 11 |
| abstract_inverted_index.capabilities | 81 |
| abstract_inverted_index.computation; | 148 |
| abstract_inverted_index.consistently | 126 |
| abstract_inverted_index.correlations | 37 |
| abstract_inverted_index.pre-training | 54, 76 |
| abstract_inverted_index.quantitative | 6 |
| abstract_inverted_index.unsupervised | 70 |
| abstract_inverted_index.Computational | 0 |
| abstract_inverted_index.computational | 153 |
| abstract_inverted_index.contrastively | 114 |
| abstract_inverted_index.correlations. | 121 |
| abstract_inverted_index.significantly | 101 |
| abstract_inverted_index.verification, | 140 |
| abstract_inverted_index.transferability | 93 |
| abstract_inverted_index.log-probabilities | 86 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |