LLMs4OL 2024 Datasets: Toward Ontology Learning with Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.52825/ocp.v4i.2480
Ontology learning (OL) from unstructured data has evolved significantly, with recent advancements integrating large language models (LLMs) to enhance various aspects of the process. The paper introduces the LLMs4OL 2024 datasets, developed to benchmark and advance research in OL using LLMs. The LLMs4OL 2024 dataset as a key component of the LLMs4OL Challenge, targets three primary OL tasks: Term Typing, Taxonomy Discovery, and Non-Taxonomic Relation Extraction. It encompasses seven domains, i.e. lexosemantics and biological functions, offering a comprehensive resource for evaluating LLM-based OL approaches Each task within the dataset is carefully crafted to facilitate both Few-Shot (FS) and Zero-Shot (ZS) evaluation scenarios, allowing for robust assessment of model performance across different knowledge domains to address a critical gap in the field by offering standardized benchmarks for fair comparison for evaluating LLM applications in OL.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.52825/ocp.v4i.2480
- OA Status
- diamond
- Cited By
- 15
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403071417
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403071417Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.52825/ocp.v4i.2480Digital Object Identifier
- Title
-
LLMs4OL 2024 Datasets: Toward Ontology Learning with Large Language ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-02Full publication date if available
- Authors
-
Hamed Babaei Giglou, Jennifer D’Souza, Sameer Sadruddin, Sören AuerList of authors in order
- Landing page
-
https://doi.org/10.52825/ocp.v4i.2480Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.52825/ocp.v4i.2480Direct OA link when available
- Concepts
-
Ontology, Computer science, Natural language processing, Artificial intelligence, Information retrieval, Philosophy, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 10Per-year citation counts (last 5 years)
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403071417 |
|---|---|
| doi | https://doi.org/10.52825/ocp.v4i.2480 |
| ids.doi | https://doi.org/10.52825/ocp.v4i.2480 |
| ids.openalex | https://openalex.org/W4403071417 |
| fwci | 3.63774734 |
| type | article |
| title | LLMs4OL 2024 Datasets: Toward Ontology Learning with Large Language Models |
| biblio.issue | |
| biblio.volume | 4 |
| biblio.last_page | 30 |
| biblio.first_page | 17 |
| grants[0].funder | https://openalex.org/F4320320879 |
| grants[0].award_id | 460234259 |
| grants[0].funder_display_name | Deutsche Forschungsgemeinschaft |
| grants[1].funder | https://openalex.org/F4320321114 |
| grants[1].award_id | 01lS22070 |
| grants[1].funder_display_name | Bundesministerium für Bildung und Forschung |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10215 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Semantic Web and Ontologies |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9993000030517578 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| funders[0].id | https://openalex.org/F4320320879 |
| funders[0].ror | https://ror.org/018mejw64 |
| funders[0].display_name | Deutsche Forschungsgemeinschaft |
| funders[1].id | https://openalex.org/F4320321114 |
| funders[1].ror | https://ror.org/04pz7b180 |
| funders[1].display_name | Bundesministerium für Bildung und Forschung |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C25810664 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7292306423187256 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q44325 |
| concepts[0].display_name | Ontology |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6742132306098938 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5579007863998413 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3672729432582855 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C23123220 |
| concepts[4].level | 1 |
| concepts[4].score | 0.324131578207016 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[4].display_name | Information retrieval |
| concepts[5].id | https://openalex.org/C138885662 |
| concepts[5].level | 0 |
| concepts[5].score | 0.07819965481758118 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[5].display_name | Philosophy |
| concepts[6].id | https://openalex.org/C111472728 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0781933069229126 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[6].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/ontology |
| keywords[0].score | 0.7292306423187256 |
| keywords[0].display_name | Ontology |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6742132306098938 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.5579007863998413 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3672729432582855 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/information-retrieval |
| keywords[4].score | 0.324131578207016 |
| keywords[4].display_name | Information retrieval |
| keywords[5].id | https://openalex.org/keywords/philosophy |
| keywords[5].score | 0.07819965481758118 |
| keywords[5].display_name | Philosophy |
| keywords[6].id | https://openalex.org/keywords/epistemology |
| keywords[6].score | 0.0781933069229126 |
| keywords[6].display_name | Epistemology |
| language | en |
| locations[0].id | doi:10.52825/ocp.v4i.2480 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4220650788 |
| locations[0].source.issn | 2749-5841 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2749-5841 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Open Conference Proceedings |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Open Conference Proceedings |
| locations[0].landing_page_url | https://doi.org/10.52825/ocp.v4i.2480 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5011949308 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3758-1454 |
| authorships[0].author.display_name | Hamed Babaei Giglou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hamed Babaei Giglou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5017940779 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6616-9509 |
| authorships[1].author.display_name | Jennifer D’Souza |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jennifer D’Souza |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5096858056 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sameer Sadruddin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sameer Sadruddin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5071765665 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sören Auer |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sören Auer |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.52825/ocp.v4i.2480 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LLMs4OL 2024 Datasets: Toward Ontology Learning with Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W3204019825 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| locations_count | 1 |
| best_oa_location.id | doi:10.52825/ocp.v4i.2480 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4220650788 |
| best_oa_location.source.issn | 2749-5841 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2749-5841 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Open Conference Proceedings |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Open Conference Proceedings |
| best_oa_location.landing_page_url | https://doi.org/10.52825/ocp.v4i.2480 |
| primary_location.id | doi:10.52825/ocp.v4i.2480 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4220650788 |
| primary_location.source.issn | 2749-5841 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2749-5841 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Open Conference Proceedings |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Open Conference Proceedings |
| primary_location.landing_page_url | https://doi.org/10.52825/ocp.v4i.2480 |
| publication_date | 2024-10-02 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4255991504, https://openalex.org/W2980955840, https://openalex.org/W4247003756, https://openalex.org/W2171201416, https://openalex.org/W2104419524, https://openalex.org/W2894652650, https://openalex.org/W4388144297, https://openalex.org/W4392737079, https://openalex.org/W4392822529, https://openalex.org/W4397029707, https://openalex.org/W4293690910, https://openalex.org/W2081580037, https://openalex.org/W2159583324, https://openalex.org/W4393527628, https://openalex.org/W102708294, https://openalex.org/W104552425, https://openalex.org/W2728059831 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 46, 76, 115 |
| abstract_inverted_index.It | 66 |
| abstract_inverted_index.OL | 38, 56, 82 |
| abstract_inverted_index.as | 45 |
| abstract_inverted_index.by | 121 |
| abstract_inverted_index.in | 37, 118, 132 |
| abstract_inverted_index.is | 89 |
| abstract_inverted_index.of | 21, 49, 106 |
| abstract_inverted_index.to | 17, 32, 92, 113 |
| abstract_inverted_index.LLM | 130 |
| abstract_inverted_index.OL. | 133 |
| abstract_inverted_index.The | 24, 41 |
| abstract_inverted_index.and | 34, 62, 72, 97 |
| abstract_inverted_index.for | 79, 103, 125, 128 |
| abstract_inverted_index.gap | 117 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.key | 47 |
| abstract_inverted_index.the | 22, 27, 50, 87, 119 |
| abstract_inverted_index.(FS) | 96 |
| abstract_inverted_index.(OL) | 2 |
| abstract_inverted_index.(ZS) | 99 |
| abstract_inverted_index.2024 | 29, 43 |
| abstract_inverted_index.Each | 84 |
| abstract_inverted_index.Term | 58 |
| abstract_inverted_index.both | 94 |
| abstract_inverted_index.data | 5 |
| abstract_inverted_index.fair | 126 |
| abstract_inverted_index.from | 3 |
| abstract_inverted_index.i.e. | 70 |
| abstract_inverted_index.task | 85 |
| abstract_inverted_index.with | 9 |
| abstract_inverted_index.LLMs. | 40 |
| abstract_inverted_index.field | 120 |
| abstract_inverted_index.large | 13 |
| abstract_inverted_index.model | 107 |
| abstract_inverted_index.paper | 25 |
| abstract_inverted_index.seven | 68 |
| abstract_inverted_index.three | 54 |
| abstract_inverted_index.using | 39 |
| abstract_inverted_index.(LLMs) | 16 |
| abstract_inverted_index.across | 109 |
| abstract_inverted_index.models | 15 |
| abstract_inverted_index.recent | 10 |
| abstract_inverted_index.robust | 104 |
| abstract_inverted_index.tasks: | 57 |
| abstract_inverted_index.within | 86 |
| abstract_inverted_index.LLMs4OL | 28, 42, 51 |
| abstract_inverted_index.Typing, | 59 |
| abstract_inverted_index.address | 114 |
| abstract_inverted_index.advance | 35 |
| abstract_inverted_index.aspects | 20 |
| abstract_inverted_index.crafted | 91 |
| abstract_inverted_index.dataset | 44, 88 |
| abstract_inverted_index.domains | 112 |
| abstract_inverted_index.enhance | 18 |
| abstract_inverted_index.evolved | 7 |
| abstract_inverted_index.primary | 55 |
| abstract_inverted_index.targets | 53 |
| abstract_inverted_index.various | 19 |
| abstract_inverted_index.Few-Shot | 95 |
| abstract_inverted_index.Ontology | 0 |
| abstract_inverted_index.Relation | 64 |
| abstract_inverted_index.Taxonomy | 60 |
| abstract_inverted_index.allowing | 102 |
| abstract_inverted_index.critical | 116 |
| abstract_inverted_index.domains, | 69 |
| abstract_inverted_index.language | 14 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.offering | 75, 122 |
| abstract_inverted_index.process. | 23 |
| abstract_inverted_index.research | 36 |
| abstract_inverted_index.resource | 78 |
| abstract_inverted_index.LLM-based | 81 |
| abstract_inverted_index.Zero-Shot | 98 |
| abstract_inverted_index.benchmark | 33 |
| abstract_inverted_index.carefully | 90 |
| abstract_inverted_index.component | 48 |
| abstract_inverted_index.datasets, | 30 |
| abstract_inverted_index.developed | 31 |
| abstract_inverted_index.different | 110 |
| abstract_inverted_index.knowledge | 111 |
| abstract_inverted_index.Challenge, | 52 |
| abstract_inverted_index.Discovery, | 61 |
| abstract_inverted_index.approaches | 83 |
| abstract_inverted_index.assessment | 105 |
| abstract_inverted_index.benchmarks | 124 |
| abstract_inverted_index.biological | 73 |
| abstract_inverted_index.comparison | 127 |
| abstract_inverted_index.evaluating | 80, 129 |
| abstract_inverted_index.evaluation | 100 |
| abstract_inverted_index.facilitate | 93 |
| abstract_inverted_index.functions, | 74 |
| abstract_inverted_index.introduces | 26 |
| abstract_inverted_index.scenarios, | 101 |
| abstract_inverted_index.Extraction. | 65 |
| abstract_inverted_index.encompasses | 67 |
| abstract_inverted_index.integrating | 12 |
| abstract_inverted_index.performance | 108 |
| abstract_inverted_index.advancements | 11 |
| abstract_inverted_index.applications | 131 |
| abstract_inverted_index.standardized | 123 |
| abstract_inverted_index.unstructured | 4 |
| abstract_inverted_index.Non-Taxonomic | 63 |
| abstract_inverted_index.comprehensive | 77 |
| abstract_inverted_index.lexosemantics | 71 |
| abstract_inverted_index.significantly, | 8 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.93041645 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |