LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.11116
Existing automatic evaluation on text-to-image synthesis can only provide an image-text matching score, without considering the object-level compositionality, which results in poor correlation with human judgments. In this work, we propose LLMScore, a new framework that offers evaluation scores with multi-granularity compositionality. LLMScore leverages the large language models (LLMs) to evaluate text-to-image models. Initially, it transforms the image into image-level and object-level visual descriptions. Then an evaluation instruction is fed into the LLMs to measure the alignment between the synthesized image and the text, ultimately generating a score accompanied by a rationale. Our substantial analysis reveals the highest correlation of LLMScore with human judgments on a wide range of datasets (Attribute Binding Contrast, Concept Conjunction, MSCOCO, DrawBench, PaintSkills). Notably, our LLMScore achieves Kendall's tau correlation with human evaluations that is 58.8% and 31.2% higher than the commonly-used text-image matching metrics CLIP and BLIP, respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.11116
- https://arxiv.org/pdf/2305.11116
- OA Status
- green
- Cited By
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4377164366
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4377164366Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.11116Digital Object Identifier
- Title
-
LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis EvaluationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-18Full publication date if available
- Authors
-
Yujie Lu, Xianjun Yang, Xiujun Li, Xin Eric Wang, William Yang WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.11116Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.11116Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.11116Direct OA link when available
- Concepts
-
Image (mathematics), Matching (statistics), Computer science, Principle of compositionality, Granularity, Correlation, Natural language processing, Artificial intelligence, Object (grammar), Range (aeronautics), Measure (data warehouse), Pattern recognition (psychology), Data mining, Statistics, Mathematics, Programming language, Geometry, Composite material, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4377164366 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.11116 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.11116 |
| ids.openalex | https://openalex.org/W4377164366 |
| fwci | |
| type | preprint |
| title | LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10601 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9825000166893005 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Handwritten Text Recognition Techniques |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9746000170707703 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C115961682 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7077622413635254 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[0].display_name | Image (mathematics) |
| concepts[1].id | https://openalex.org/C165064840 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6702009439468384 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[1].display_name | Matching (statistics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6636999845504761 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C121375916 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6157399415969849 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q936559 |
| concepts[3].display_name | Principle of compositionality |
| concepts[4].id | https://openalex.org/C177774035 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5963484048843384 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1246948 |
| concepts[4].display_name | Granularity |
| concepts[5].id | https://openalex.org/C117220453 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5512224435806274 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[5].display_name | Correlation |
| concepts[6].id | https://openalex.org/C204321447 |
| concepts[6].level | 1 |
| concepts[6].score | 0.536091148853302 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[6].display_name | Natural language processing |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5335795283317566 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2781238097 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5277068018913269 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[8].display_name | Object (grammar) |
| concepts[9].id | https://openalex.org/C204323151 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4672892689704895 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[9].display_name | Range (aeronautics) |
| concepts[10].id | https://openalex.org/C2780009758 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46633172035217285 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[10].display_name | Measure (data warehouse) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.35505762696266174 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2125629186630249 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.17950302362442017 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.12555566430091858 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.08301830291748047 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C159985019 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[17].display_name | Composite material |
| concepts[18].id | https://openalex.org/C192562407 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[18].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/image |
| keywords[0].score | 0.7077622413635254 |
| keywords[0].display_name | Image (mathematics) |
| keywords[1].id | https://openalex.org/keywords/matching |
| keywords[1].score | 0.6702009439468384 |
| keywords[1].display_name | Matching (statistics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6636999845504761 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/principle-of-compositionality |
| keywords[3].score | 0.6157399415969849 |
| keywords[3].display_name | Principle of compositionality |
| keywords[4].id | https://openalex.org/keywords/granularity |
| keywords[4].score | 0.5963484048843384 |
| keywords[4].display_name | Granularity |
| keywords[5].id | https://openalex.org/keywords/correlation |
| keywords[5].score | 0.5512224435806274 |
| keywords[5].display_name | Correlation |
| keywords[6].id | https://openalex.org/keywords/natural-language-processing |
| keywords[6].score | 0.536091148853302 |
| keywords[6].display_name | Natural language processing |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5335795283317566 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/object |
| keywords[8].score | 0.5277068018913269 |
| keywords[8].display_name | Object (grammar) |
| keywords[9].id | https://openalex.org/keywords/range |
| keywords[9].score | 0.4672892689704895 |
| keywords[9].display_name | Range (aeronautics) |
| keywords[10].id | https://openalex.org/keywords/measure |
| keywords[10].score | 0.46633172035217285 |
| keywords[10].display_name | Measure (data warehouse) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.35505762696266174 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.2125629186630249 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.17950302362442017 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.12555566430091858 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/programming-language |
| keywords[15].score | 0.08301830291748047 |
| keywords[15].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.11116 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.11116 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.11116 |
| locations[1].id | doi:10.48550/arxiv.2305.11116 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2305.11116 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5036525093 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0691-2129 |
| authorships[0].author.display_name | Yujie Lu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lu, Yujie |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5109445159 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xianjun Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Xianjun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5021140826 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7771-2725 |
| authorships[2].author.display_name | Xiujun Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Xiujun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5089351095 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xin Eric Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Xin Eric |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100702485 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6153-8240 |
| authorships[4].author.display_name | William Yang Wang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wang, William Yang |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.11116 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-05-21T00:00:00 |
| display_name | LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W1526190050, https://openalex.org/W4251923961, https://openalex.org/W2477397717, https://openalex.org/W2500457737, https://openalex.org/W2010490241, https://openalex.org/W4287025733, https://openalex.org/W4317425742, https://openalex.org/W3192500523, https://openalex.org/W4241382148, https://openalex.org/W2097744609 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.11116 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.11116 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.11116 |
| primary_location.id | pmh:oai:arXiv.org:2305.11116 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.11116 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.11116 |
| publication_date | 2023-05-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 32, 86, 90, 105 |
| abstract_inverted_index.In | 26 |
| abstract_inverted_index.an | 9, 65 |
| abstract_inverted_index.by | 89 |
| abstract_inverted_index.in | 20 |
| abstract_inverted_index.is | 68, 129 |
| abstract_inverted_index.it | 54 |
| abstract_inverted_index.of | 99, 108 |
| abstract_inverted_index.on | 3, 104 |
| abstract_inverted_index.to | 49, 73 |
| abstract_inverted_index.we | 29 |
| abstract_inverted_index.Our | 92 |
| abstract_inverted_index.and | 60, 81, 131, 141 |
| abstract_inverted_index.can | 6 |
| abstract_inverted_index.fed | 69 |
| abstract_inverted_index.new | 33 |
| abstract_inverted_index.our | 119 |
| abstract_inverted_index.tau | 123 |
| abstract_inverted_index.the | 15, 44, 56, 71, 75, 78, 82, 96, 135 |
| abstract_inverted_index.CLIP | 140 |
| abstract_inverted_index.LLMs | 72 |
| abstract_inverted_index.Then | 64 |
| abstract_inverted_index.into | 58, 70 |
| abstract_inverted_index.only | 7 |
| abstract_inverted_index.poor | 21 |
| abstract_inverted_index.than | 134 |
| abstract_inverted_index.that | 35, 128 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.wide | 106 |
| abstract_inverted_index.with | 23, 39, 101, 125 |
| abstract_inverted_index.31.2% | 132 |
| abstract_inverted_index.58.8% | 130 |
| abstract_inverted_index.BLIP, | 142 |
| abstract_inverted_index.human | 24, 102, 126 |
| abstract_inverted_index.image | 57, 80 |
| abstract_inverted_index.large | 45 |
| abstract_inverted_index.range | 107 |
| abstract_inverted_index.score | 87 |
| abstract_inverted_index.text, | 83 |
| abstract_inverted_index.which | 18 |
| abstract_inverted_index.work, | 28 |
| abstract_inverted_index.(LLMs) | 48 |
| abstract_inverted_index.higher | 133 |
| abstract_inverted_index.models | 47 |
| abstract_inverted_index.offers | 36 |
| abstract_inverted_index.score, | 12 |
| abstract_inverted_index.scores | 38 |
| abstract_inverted_index.visual | 62 |
| abstract_inverted_index.Binding | 111 |
| abstract_inverted_index.Concept | 113 |
| abstract_inverted_index.MSCOCO, | 115 |
| abstract_inverted_index.between | 77 |
| abstract_inverted_index.highest | 97 |
| abstract_inverted_index.measure | 74 |
| abstract_inverted_index.metrics | 139 |
| abstract_inverted_index.models. | 52 |
| abstract_inverted_index.propose | 30 |
| abstract_inverted_index.provide | 8 |
| abstract_inverted_index.results | 19 |
| abstract_inverted_index.reveals | 95 |
| abstract_inverted_index.without | 13 |
| abstract_inverted_index.Existing | 0 |
| abstract_inverted_index.LLMScore | 42, 100, 120 |
| abstract_inverted_index.Notably, | 118 |
| abstract_inverted_index.achieves | 121 |
| abstract_inverted_index.analysis | 94 |
| abstract_inverted_index.datasets | 109 |
| abstract_inverted_index.evaluate | 50 |
| abstract_inverted_index.language | 46 |
| abstract_inverted_index.matching | 11, 138 |
| abstract_inverted_index.Contrast, | 112 |
| abstract_inverted_index.Kendall's | 122 |
| abstract_inverted_index.LLMScore, | 31 |
| abstract_inverted_index.alignment | 76 |
| abstract_inverted_index.automatic | 1 |
| abstract_inverted_index.framework | 34 |
| abstract_inverted_index.judgments | 103 |
| abstract_inverted_index.leverages | 43 |
| abstract_inverted_index.synthesis | 5 |
| abstract_inverted_index.(Attribute | 110 |
| abstract_inverted_index.DrawBench, | 116 |
| abstract_inverted_index.Initially, | 53 |
| abstract_inverted_index.evaluation | 2, 37, 66 |
| abstract_inverted_index.generating | 85 |
| abstract_inverted_index.image-text | 10 |
| abstract_inverted_index.judgments. | 25 |
| abstract_inverted_index.rationale. | 91 |
| abstract_inverted_index.text-image | 137 |
| abstract_inverted_index.transforms | 55 |
| abstract_inverted_index.ultimately | 84 |
| abstract_inverted_index.accompanied | 88 |
| abstract_inverted_index.considering | 14 |
| abstract_inverted_index.correlation | 22, 98, 124 |
| abstract_inverted_index.evaluations | 127 |
| abstract_inverted_index.image-level | 59 |
| abstract_inverted_index.instruction | 67 |
| abstract_inverted_index.substantial | 93 |
| abstract_inverted_index.synthesized | 79 |
| abstract_inverted_index.Conjunction, | 114 |
| abstract_inverted_index.object-level | 16, 61 |
| abstract_inverted_index.PaintSkills). | 117 |
| abstract_inverted_index.commonly-used | 136 |
| abstract_inverted_index.descriptions. | 63 |
| abstract_inverted_index.respectively. | 143 |
| abstract_inverted_index.text-to-image | 4, 51 |
| abstract_inverted_index.compositionality, | 17 |
| abstract_inverted_index.compositionality. | 41 |
| abstract_inverted_index.multi-granularity | 40 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |