Local Entropy in Proteins Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.26434/chemrxiv-2025-qcd4w-v2
Proteins populate dynamic ensembles, yet how temperature and mutations reshape them remains poorly understood. We introduce a local entropy metric that assigns each residue a Shannon entropy from a graph-based map of accessible substates, providing a continuous measure of structural complexity across folded, unfolded, and disordered states. In molecular dynamics simulations of the fast-folding gpW protein, the average local entropy shifts sharply near the melting point, yielding residue-specific entropy curves that cluster into distinct unfolding categories and revealing that the unfolding phase transition depends on the spatial scale used to describe amino acid environments. In simulations of $\alpha$-synuclein, an intrinsically disordered protein, variation of local entropy along the sequence at physiological temperature is highly heterogeneous and closely resembles that of gpW near its melting point; Parkinson’s disease mutations in $\alpha$-synuclein locally reduce entropy while perturbing distant regions. These results highlight how temperature and subtle perturbations, such as single-residue changes, remodel conformational ensembles. Local entropy correlates with NMR observables and provides a generalizable framework with broad potential applications beyond protein science.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.26434/chemrxiv-2025-qcd4w-v2
- https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/68a71a9823be8e43d6485077/original/local-entropy-in-proteins.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413596026
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413596026Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26434/chemrxiv-2025-qcd4w-v2Digital Object Identifier
- Title
-
Local Entropy in ProteinsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-25Full publication date if available
- Authors
-
Patrick Senet, Adrien Guzzo, Patrice Delarue, Christophe Laforge, Gia G. Maisuradze, Jean‐Marie Heydel, Fabrice Neiers, Adrien Nicolaı̈List of authors in order
- Landing page
-
https://doi.org/10.26434/chemrxiv-2025-qcd4w-v2Publisher landing page
- PDF URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/68a71a9823be8e43d6485077/original/local-entropy-in-proteins.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/68a71a9823be8e43d6485077/original/local-entropy-in-proteins.pdfDirect OA link when available
- Concepts
-
Statistical physics, Mathematics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413596026 |
|---|---|
| doi | https://doi.org/10.26434/chemrxiv-2025-qcd4w-v2 |
| ids.doi | https://doi.org/10.26434/chemrxiv-2025-qcd4w-v2 |
| ids.openalex | https://openalex.org/W4413596026 |
| fwci | 0.0 |
| type | preprint |
| title | Local Entropy in Proteins |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10044 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9541000127792358 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Protein Structure and Dynamics |
| topics[1].id | https://openalex.org/T13539 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9498999714851379 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1606 |
| topics[1].subfield.display_name | Physical and Theoretical Chemistry |
| topics[1].display_name | thermodynamics and calorimetric analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C121864883 |
| concepts[0].level | 1 |
| concepts[0].score | 0.3939500153064728 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[0].display_name | Statistical physics |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3327767252922058 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C121332964 |
| concepts[2].level | 0 |
| concepts[2].score | 0.2269274890422821 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[2].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/statistical-physics |
| keywords[0].score | 0.3939500153064728 |
| keywords[0].display_name | Statistical physics |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.3327767252922058 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/physics |
| keywords[2].score | 0.2269274890422821 |
| keywords[2].display_name | Physics |
| language | en |
| locations[0].id | doi:10.26434/chemrxiv-2025-qcd4w-v2 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/68a71a9823be8e43d6485077/original/local-entropy-in-proteins.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26434/chemrxiv-2025-qcd4w-v2 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5008865404 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2339-0019 |
| authorships[0].author.display_name | Patrick Senet |
| authorships[0].affiliations[0].raw_affiliation_string | Université Bourgogne Europe |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Patrick Senet |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Université Bourgogne Europe |
| authorships[1].author.id | https://openalex.org/A5063920591 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Adrien Guzzo |
| authorships[1].affiliations[0].raw_affiliation_string | Université Bourgogne Europe |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Adrien Guzzo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Université Bourgogne Europe |
| authorships[2].author.id | https://openalex.org/A5036481963 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Patrice Delarue |
| authorships[2].affiliations[0].raw_affiliation_string | Université Bourgogne Europe |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Patrice Delarue |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Université Bourgogne Europe |
| authorships[3].author.id | https://openalex.org/A5079555397 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-6787-0780 |
| authorships[3].author.display_name | Christophe Laforge |
| authorships[3].affiliations[0].raw_affiliation_string | Université Bourgogne Europe |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Christophe Laforge |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Université Bourgogne Europe |
| authorships[4].author.id | https://openalex.org/A5052415967 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1901-8433 |
| authorships[4].author.display_name | Gia G. Maisuradze |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[4].affiliations[0].raw_affiliation_string | Cornell University |
| authorships[4].institutions[0].id | https://openalex.org/I205783295 |
| authorships[4].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Cornell University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gia G. Maisuradze |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Cornell University |
| authorships[5].author.id | https://openalex.org/A5034929604 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6089-9922 |
| authorships[5].author.display_name | Jean‐Marie Heydel |
| authorships[5].affiliations[0].raw_affiliation_string | Université Bourgogne Europe |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jean-Marie Heydel |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Université Bourgogne Europe |
| authorships[6].author.id | https://openalex.org/A5018434968 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8965-4929 |
| authorships[6].author.display_name | Fabrice Neiers |
| authorships[6].affiliations[0].raw_affiliation_string | Université Bourgogne Europe |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Fabrice Neiers |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Université Bourgogne Europe |
| authorships[7].author.id | https://openalex.org/A5048151817 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7779-4652 |
| authorships[7].author.display_name | Adrien Nicolaı̈ |
| authorships[7].affiliations[0].raw_affiliation_string | Université Bourgogne Europe |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Adrien Nicolaï |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Université Bourgogne Europe |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/68a71a9823be8e43d6485077/original/local-entropy-in-proteins.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Local Entropy in Proteins |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10044 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9541000127792358 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Protein Structure and Dynamics |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2962838298, https://openalex.org/W2600246793 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26434/chemrxiv-2025-qcd4w-v2 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/68a71a9823be8e43d6485077/original/local-entropy-in-proteins.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2025-qcd4w-v2 |
| primary_location.id | doi:10.26434/chemrxiv-2025-qcd4w-v2 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/68a71a9823be8e43d6485077/original/local-entropy-in-proteins.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2025-qcd4w-v2 |
| publication_date | 2025-08-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16, 24, 28, 35, 160 |
| abstract_inverted_index.In | 47, 94 |
| abstract_inverted_index.We | 14 |
| abstract_inverted_index.an | 98 |
| abstract_inverted_index.as | 146 |
| abstract_inverted_index.at | 109 |
| abstract_inverted_index.in | 128 |
| abstract_inverted_index.is | 112 |
| abstract_inverted_index.of | 31, 38, 51, 96, 103, 119 |
| abstract_inverted_index.on | 84 |
| abstract_inverted_index.to | 89 |
| abstract_inverted_index.NMR | 156 |
| abstract_inverted_index.and | 7, 44, 76, 115, 142, 158 |
| abstract_inverted_index.gpW | 54, 120 |
| abstract_inverted_index.how | 5, 140 |
| abstract_inverted_index.its | 122 |
| abstract_inverted_index.map | 30 |
| abstract_inverted_index.the | 52, 56, 63, 79, 85, 107 |
| abstract_inverted_index.yet | 4 |
| abstract_inverted_index.acid | 92 |
| abstract_inverted_index.each | 22 |
| abstract_inverted_index.from | 27 |
| abstract_inverted_index.into | 72 |
| abstract_inverted_index.near | 62, 121 |
| abstract_inverted_index.such | 145 |
| abstract_inverted_index.that | 20, 70, 78, 118 |
| abstract_inverted_index.them | 10 |
| abstract_inverted_index.used | 88 |
| abstract_inverted_index.with | 155, 163 |
| abstract_inverted_index.Local | 152 |
| abstract_inverted_index.These | 137 |
| abstract_inverted_index.along | 106 |
| abstract_inverted_index.amino | 91 |
| abstract_inverted_index.broad | 164 |
| abstract_inverted_index.local | 17, 58, 104 |
| abstract_inverted_index.phase | 81 |
| abstract_inverted_index.scale | 87 |
| abstract_inverted_index.while | 133 |
| abstract_inverted_index.across | 41 |
| abstract_inverted_index.beyond | 167 |
| abstract_inverted_index.curves | 69 |
| abstract_inverted_index.highly | 113 |
| abstract_inverted_index.metric | 19 |
| abstract_inverted_index.point, | 65 |
| abstract_inverted_index.point; | 124 |
| abstract_inverted_index.poorly | 12 |
| abstract_inverted_index.reduce | 131 |
| abstract_inverted_index.shifts | 60 |
| abstract_inverted_index.subtle | 143 |
| abstract_inverted_index.Shannon | 25 |
| abstract_inverted_index.assigns | 21 |
| abstract_inverted_index.average | 57 |
| abstract_inverted_index.closely | 116 |
| abstract_inverted_index.cluster | 71 |
| abstract_inverted_index.depends | 83 |
| abstract_inverted_index.disease | 126 |
| abstract_inverted_index.distant | 135 |
| abstract_inverted_index.dynamic | 2 |
| abstract_inverted_index.entropy | 18, 26, 59, 68, 105, 132, 153 |
| abstract_inverted_index.folded, | 42 |
| abstract_inverted_index.locally | 130 |
| abstract_inverted_index.measure | 37 |
| abstract_inverted_index.melting | 64, 123 |
| abstract_inverted_index.protein | 168 |
| abstract_inverted_index.remains | 11 |
| abstract_inverted_index.remodel | 149 |
| abstract_inverted_index.reshape | 9 |
| abstract_inverted_index.residue | 23 |
| abstract_inverted_index.results | 138 |
| abstract_inverted_index.sharply | 61 |
| abstract_inverted_index.spatial | 86 |
| abstract_inverted_index.states. | 46 |
| abstract_inverted_index.Proteins | 0 |
| abstract_inverted_index.changes, | 148 |
| abstract_inverted_index.describe | 90 |
| abstract_inverted_index.distinct | 73 |
| abstract_inverted_index.dynamics | 49 |
| abstract_inverted_index.populate | 1 |
| abstract_inverted_index.protein, | 55, 101 |
| abstract_inverted_index.provides | 159 |
| abstract_inverted_index.regions. | 136 |
| abstract_inverted_index.science. | 169 |
| abstract_inverted_index.sequence | 108 |
| abstract_inverted_index.yielding | 66 |
| abstract_inverted_index.framework | 162 |
| abstract_inverted_index.highlight | 139 |
| abstract_inverted_index.introduce | 15 |
| abstract_inverted_index.molecular | 48 |
| abstract_inverted_index.mutations | 8, 127 |
| abstract_inverted_index.potential | 165 |
| abstract_inverted_index.providing | 34 |
| abstract_inverted_index.resembles | 117 |
| abstract_inverted_index.revealing | 77 |
| abstract_inverted_index.unfolded, | 43 |
| abstract_inverted_index.unfolding | 74, 80 |
| abstract_inverted_index.variation | 102 |
| abstract_inverted_index.accessible | 32 |
| abstract_inverted_index.categories | 75 |
| abstract_inverted_index.complexity | 40 |
| abstract_inverted_index.continuous | 36 |
| abstract_inverted_index.correlates | 154 |
| abstract_inverted_index.disordered | 45, 100 |
| abstract_inverted_index.ensembles, | 3 |
| abstract_inverted_index.ensembles. | 151 |
| abstract_inverted_index.perturbing | 134 |
| abstract_inverted_index.structural | 39 |
| abstract_inverted_index.substates, | 33 |
| abstract_inverted_index.transition | 82 |
| abstract_inverted_index.graph-based | 29 |
| abstract_inverted_index.observables | 157 |
| abstract_inverted_index.simulations | 50, 95 |
| abstract_inverted_index.temperature | 6, 111, 141 |
| abstract_inverted_index.understood. | 13 |
| abstract_inverted_index.applications | 166 |
| abstract_inverted_index.fast-folding | 53 |
| abstract_inverted_index.Parkinson’s | 125 |
| abstract_inverted_index.environments. | 93 |
| abstract_inverted_index.generalizable | 161 |
| abstract_inverted_index.heterogeneous | 114 |
| abstract_inverted_index.intrinsically | 99 |
| abstract_inverted_index.physiological | 110 |
| abstract_inverted_index.conformational | 150 |
| abstract_inverted_index.perturbations, | 144 |
| abstract_inverted_index.single-residue | 147 |
| abstract_inverted_index.residue-specific | 67 |
| abstract_inverted_index.$\alpha$-synuclein | 129 |
| abstract_inverted_index.$\alpha$-synuclein, | 97 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.34902282 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |