Local linear smoothing for regression surfaces on the simplex using Dirichlet kernels Article Swipe
Christian Genest
,
Frédéric Ouimet
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.07209
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.07209
This paper introduces a local linear smoother for regression surfaces on the simplex. The estimator solves a least-squares regression problem weighted by a locally adaptive Dirichlet kernel, ensuring good boundary properties. Asymptotic results for the bias, variance, mean squared error, and mean integrated squared error are derived, generalizing the univariate results of Chen [Ann. Inst. Statist. Math., 54(2) (2002), pp. 312-323]. A simulation study shows that the proposed local linear estimator with Dirichlet kernel outperforms its only direct competitor in the literature, the Nadaraya-Watson estimator with Dirichlet kernel due to Bouzebda, Nezzal and Elhattab [AIMS Math., 9(9) (2024), pp. 26195-26282].
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.07209
- https://arxiv.org/pdf/2408.07209
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402426544
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402426544Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.07209Digital Object Identifier
- Title
-
Local linear smoothing for regression surfaces on the simplex using Dirichlet kernelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-13Full publication date if available
- Authors
-
Christian Genest, Frédéric OuimetList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.07209Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.07209Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.07209Direct OA link when available
- Concepts
-
Smoothing, Mathematics, Simplex, Linear regression, Dirichlet distribution, Regression, Statistics, Econometrics, Combinatorics, Mathematical analysis, Boundary value problemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402426544 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.07209 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.07209 |
| ids.openalex | https://openalex.org/W4402426544 |
| fwci | 0.0 |
| type | preprint |
| title | Local linear smoothing for regression surfaces on the simplex using Dirichlet kernels |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11245 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9567000269889832 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Advanced Numerical Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3770464 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6493076086044312 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[0].display_name | Smoothing |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5871975421905518 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C62438384 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5726252198219299 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q331350 |
| concepts[2].display_name | Simplex |
| concepts[3].id | https://openalex.org/C48921125 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5638146996498108 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[3].display_name | Linear regression |
| concepts[4].id | https://openalex.org/C169214877 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5288413763046265 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q981016 |
| concepts[4].display_name | Dirichlet distribution |
| concepts[5].id | https://openalex.org/C83546350 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4644468128681183 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[5].display_name | Regression |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4144083559513092 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3324809968471527 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C114614502 |
| concepts[8].level | 1 |
| concepts[8].score | 0.21557867527008057 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[8].display_name | Combinatorics |
| concepts[9].id | https://openalex.org/C134306372 |
| concepts[9].level | 1 |
| concepts[9].score | 0.18455255031585693 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[9].display_name | Mathematical analysis |
| concepts[10].id | https://openalex.org/C182310444 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1332643 |
| concepts[10].display_name | Boundary value problem |
| keywords[0].id | https://openalex.org/keywords/smoothing |
| keywords[0].score | 0.6493076086044312 |
| keywords[0].display_name | Smoothing |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.5871975421905518 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/simplex |
| keywords[2].score | 0.5726252198219299 |
| keywords[2].display_name | Simplex |
| keywords[3].id | https://openalex.org/keywords/linear-regression |
| keywords[3].score | 0.5638146996498108 |
| keywords[3].display_name | Linear regression |
| keywords[4].id | https://openalex.org/keywords/dirichlet-distribution |
| keywords[4].score | 0.5288413763046265 |
| keywords[4].display_name | Dirichlet distribution |
| keywords[5].id | https://openalex.org/keywords/regression |
| keywords[5].score | 0.4644468128681183 |
| keywords[5].display_name | Regression |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.4144083559513092 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/econometrics |
| keywords[7].score | 0.3324809968471527 |
| keywords[7].display_name | Econometrics |
| keywords[8].id | https://openalex.org/keywords/combinatorics |
| keywords[8].score | 0.21557867527008057 |
| keywords[8].display_name | Combinatorics |
| keywords[9].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[9].score | 0.18455255031585693 |
| keywords[9].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.07209 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.07209 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.07209 |
| locations[1].id | doi:10.48550/arxiv.2408.07209 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.07209 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001821266 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1764-0202 |
| authorships[0].author.display_name | Christian Genest |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Genest, Christian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5010318685 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7933-5265 |
| authorships[1].author.display_name | Frédéric Ouimet |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ouimet, Frédéric |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.07209 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Local linear smoothing for regression surfaces on the simplex using Dirichlet kernels |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11245 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9567000269889832 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Advanced Numerical Analysis Techniques |
| related_works | https://openalex.org/W1978572805, https://openalex.org/W2383807498, https://openalex.org/W1997992934, https://openalex.org/W1987225439, https://openalex.org/W3166198130, https://openalex.org/W31220157, https://openalex.org/W2288557197, https://openalex.org/W4233024177, https://openalex.org/W2101914902, https://openalex.org/W3174613421 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.07209 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.07209 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.07209 |
| primary_location.id | pmh:oai:arXiv.org:2408.07209 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.07209 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.07209 |
| publication_date | 2024-08-13 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 61 |
| abstract_inverted_index.a | 3, 16, 22 |
| abstract_inverted_index.by | 21 |
| abstract_inverted_index.in | 79 |
| abstract_inverted_index.of | 51 |
| abstract_inverted_index.on | 10 |
| abstract_inverted_index.to | 89 |
| abstract_inverted_index.The | 13 |
| abstract_inverted_index.and | 40, 92 |
| abstract_inverted_index.are | 45 |
| abstract_inverted_index.due | 88 |
| abstract_inverted_index.for | 7, 33 |
| abstract_inverted_index.its | 75 |
| abstract_inverted_index.pp. | 59, 98 |
| abstract_inverted_index.the | 11, 34, 48, 66, 80, 82 |
| abstract_inverted_index.9(9) | 96 |
| abstract_inverted_index.Chen | 52 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.good | 28 |
| abstract_inverted_index.mean | 37, 41 |
| abstract_inverted_index.only | 76 |
| abstract_inverted_index.that | 65 |
| abstract_inverted_index.with | 71, 85 |
| abstract_inverted_index.54(2) | 57 |
| abstract_inverted_index.Inst. | 54 |
| abstract_inverted_index.[AIMS | 94 |
| abstract_inverted_index.[Ann. | 53 |
| abstract_inverted_index.bias, | 35 |
| abstract_inverted_index.error | 44 |
| abstract_inverted_index.local | 4, 68 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.shows | 64 |
| abstract_inverted_index.study | 63 |
| abstract_inverted_index.Math., | 56, 95 |
| abstract_inverted_index.Nezzal | 91 |
| abstract_inverted_index.direct | 77 |
| abstract_inverted_index.error, | 39 |
| abstract_inverted_index.kernel | 73, 87 |
| abstract_inverted_index.linear | 5, 69 |
| abstract_inverted_index.solves | 15 |
| abstract_inverted_index.(2002), | 58 |
| abstract_inverted_index.(2024), | 97 |
| abstract_inverted_index.kernel, | 26 |
| abstract_inverted_index.locally | 23 |
| abstract_inverted_index.problem | 19 |
| abstract_inverted_index.results | 32, 50 |
| abstract_inverted_index.squared | 38, 43 |
| abstract_inverted_index.Elhattab | 93 |
| abstract_inverted_index.Statist. | 55 |
| abstract_inverted_index.adaptive | 24 |
| abstract_inverted_index.boundary | 29 |
| abstract_inverted_index.derived, | 46 |
| abstract_inverted_index.ensuring | 27 |
| abstract_inverted_index.proposed | 67 |
| abstract_inverted_index.simplex. | 12 |
| abstract_inverted_index.smoother | 6 |
| abstract_inverted_index.surfaces | 9 |
| abstract_inverted_index.weighted | 20 |
| abstract_inverted_index.312-323]. | 60 |
| abstract_inverted_index.Bouzebda, | 90 |
| abstract_inverted_index.Dirichlet | 25, 72, 86 |
| abstract_inverted_index.estimator | 14, 70, 84 |
| abstract_inverted_index.variance, | 36 |
| abstract_inverted_index.Asymptotic | 31 |
| abstract_inverted_index.competitor | 78 |
| abstract_inverted_index.integrated | 42 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.regression | 8, 18 |
| abstract_inverted_index.simulation | 62 |
| abstract_inverted_index.univariate | 49 |
| abstract_inverted_index.literature, | 81 |
| abstract_inverted_index.outperforms | 74 |
| abstract_inverted_index.properties. | 30 |
| abstract_inverted_index.generalizing | 47 |
| abstract_inverted_index.26195-26282]. | 99 |
| abstract_inverted_index.least-squares | 17 |
| abstract_inverted_index.Nadaraya-Watson | 83 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.20662404 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |