Location Aware Keyword Query Suggestion Based on Document Proximity Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1109/tkde.2015.2465391
Keyword suggestion in web search helps users to access relevant information without having to know how to precisely express their queries. Existing keyword suggestion techniques do not consider the locations of the users and the query results; i.e., the spatial proximity of a user to the retrieved results is not taken as a factor in the recommendation. However, the relevance of search results in many applications (e.g., location-based services) is known to be correlated with their spatial proximity to the query issuer. In this paper, we design a location-aware keyword query suggestion framework. We propose a weighted keyword-document graph, which captures both the semantic relevance between keyword queries and the spatial distance between the resulting documents and the user location. The graph is browsed in a random-walk-with-restart fashion, to select the keyword queries with the highest scores as suggestions. To make our framework scalable, we propose a partition-based approach that outperforms the baseline algorithm by up to an order of magnitude. The appropriateness of our framework and the performance of the algorithms are evaluated using real data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tkde.2015.2465391
- OA Status
- green
- Cited By
- 21
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2188608551
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2188608551Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tkde.2015.2465391Digital Object Identifier
- Title
-
Location Aware Keyword Query Suggestion Based on Document ProximityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-08-13Full publication date if available
- Authors
-
Shuyao Qi, Dingming Wu, Nikos MamoulisList of authors in order
- Landing page
-
https://doi.org/10.1109/tkde.2015.2465391Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://zenodo.org/record/3453302Direct OA link when available
- Concepts
-
Computer science, Information retrieval, Relevance (law), Keyword search, Web search query, Scalability, Partition (number theory), Graph, Query expansion, Keyword density, Data mining, Search engine, Database, Theoretical computer science, Law, Mathematics, Combinatorics, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1, 2022: 1, 2021: 4, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2188608551 |
|---|---|
| doi | https://doi.org/10.1109/tkde.2015.2465391 |
| ids.doi | https://doi.org/10.1109/tkde.2015.2465391 |
| ids.mag | 2188608551 |
| ids.openalex | https://openalex.org/W2188608551 |
| fwci | 2.17748779 |
| type | article |
| title | Location Aware Keyword Query Suggestion Based on Document Proximity |
| awards[0].id | https://openalex.org/G1754157377 |
| awards[0].funder_id | https://openalex.org/F4320320300 |
| awards[0].display_name | |
| awards[0].funder_award_id | 657347/H2020-MSCA-IF-2014 |
| awards[0].funder_display_name | European Commission |
| awards[1].id | https://openalex.org/G613150972 |
| awards[1].funder_id | https://openalex.org/F4320306709 |
| awards[1].display_name | |
| awards[1].funder_award_id | 17205015 |
| awards[1].funder_display_name | Glaucoma Research Foundation |
| biblio.issue | 1 |
| biblio.volume | 28 |
| biblio.last_page | 97 |
| biblio.first_page | 82 |
| topics[0].id | https://openalex.org/T11106 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Data Management and Algorithms |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T10203 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Recommender Systems and Techniques |
| funders[0].id | https://openalex.org/F4320306709 |
| funders[0].ror | https://ror.org/05ez53b31 |
| funders[0].display_name | Glaucoma Research Foundation |
| funders[1].id | https://openalex.org/F4320320300 |
| funders[1].ror | https://ror.org/00k4n6c32 |
| funders[1].display_name | European Commission |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8728398680686951 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C23123220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7321881055831909 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[1].display_name | Information retrieval |
| concepts[2].id | https://openalex.org/C158154518 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5570783019065857 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7310970 |
| concepts[2].display_name | Relevance (law) |
| concepts[3].id | https://openalex.org/C2988412617 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5548706650733948 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7441656 |
| concepts[3].display_name | Keyword search |
| concepts[4].id | https://openalex.org/C164120249 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5231208205223083 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q995982 |
| concepts[4].display_name | Web search query |
| concepts[5].id | https://openalex.org/C48044578 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5074684023857117 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[5].display_name | Scalability |
| concepts[6].id | https://openalex.org/C42812 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4896543622016907 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[6].display_name | Partition (number theory) |
| concepts[7].id | https://openalex.org/C132525143 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47672238945961 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[7].display_name | Graph |
| concepts[8].id | https://openalex.org/C99016210 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4754740297794342 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5488129 |
| concepts[8].display_name | Query expansion |
| concepts[9].id | https://openalex.org/C57560718 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4496746361255646 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q125627 |
| concepts[9].display_name | Keyword density |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.44551730155944824 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C97854310 |
| concepts[11].level | 2 |
| concepts[11].score | 0.291483074426651 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q19541 |
| concepts[11].display_name | Search engine |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.21693012118339539 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C80444323 |
| concepts[13].level | 1 |
| concepts[13].score | 0.21285149455070496 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[13].display_name | Theoretical computer science |
| concepts[14].id | https://openalex.org/C199539241 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[14].display_name | Law |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C114614502 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[16].display_name | Combinatorics |
| concepts[17].id | https://openalex.org/C17744445 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[17].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8728398680686951 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/information-retrieval |
| keywords[1].score | 0.7321881055831909 |
| keywords[1].display_name | Information retrieval |
| keywords[2].id | https://openalex.org/keywords/relevance |
| keywords[2].score | 0.5570783019065857 |
| keywords[2].display_name | Relevance (law) |
| keywords[3].id | https://openalex.org/keywords/keyword-search |
| keywords[3].score | 0.5548706650733948 |
| keywords[3].display_name | Keyword search |
| keywords[4].id | https://openalex.org/keywords/web-search-query |
| keywords[4].score | 0.5231208205223083 |
| keywords[4].display_name | Web search query |
| keywords[5].id | https://openalex.org/keywords/scalability |
| keywords[5].score | 0.5074684023857117 |
| keywords[5].display_name | Scalability |
| keywords[6].id | https://openalex.org/keywords/partition |
| keywords[6].score | 0.4896543622016907 |
| keywords[6].display_name | Partition (number theory) |
| keywords[7].id | https://openalex.org/keywords/graph |
| keywords[7].score | 0.47672238945961 |
| keywords[7].display_name | Graph |
| keywords[8].id | https://openalex.org/keywords/query-expansion |
| keywords[8].score | 0.4754740297794342 |
| keywords[8].display_name | Query expansion |
| keywords[9].id | https://openalex.org/keywords/keyword-density |
| keywords[9].score | 0.4496746361255646 |
| keywords[9].display_name | Keyword density |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.44551730155944824 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/search-engine |
| keywords[11].score | 0.291483074426651 |
| keywords[11].display_name | Search engine |
| keywords[12].id | https://openalex.org/keywords/database |
| keywords[12].score | 0.21693012118339539 |
| keywords[12].display_name | Database |
| keywords[13].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[13].score | 0.21285149455070496 |
| keywords[13].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.1109/tkde.2015.2465391 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S30698027 |
| locations[0].source.issn | 1041-4347, 1558-2191, 2326-3865 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1041-4347 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Knowledge and Data Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320439 |
| locations[0].source.host_organization_name | IEEE Computer Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Knowledge and Data Engineering |
| locations[0].landing_page_url | https://doi.org/10.1109/tkde.2015.2465391 |
| locations[1].id | pmh:oai:hub.hku.hk:10722/230215 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4377196271 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | The HKU Scholars Hub (University of Hong Kong) |
| locations[1].source.host_organization | https://openalex.org/I889458895 |
| locations[1].source.host_organization_name | University of Hong Kong |
| locations[1].source.host_organization_lineage | https://openalex.org/I889458895 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10722/230215 |
| locations[2].id | pmh:oai:zenodo.org:3453302 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400562 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://zenodo.org/record/3453302 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5103096676 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5411-9304 |
| authorships[0].author.display_name | Shuyao Qi |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, the University of Hong Kong, Hong Kong |
| authorships[0].institutions[0].id | https://openalex.org/I200769079 |
| authorships[0].institutions[0].ror | https://ror.org/00q4vv597 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200769079 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Hong Kong University of Science and Technology |
| authorships[0].institutions[1].id | https://openalex.org/I889458895 |
| authorships[0].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[0].institutions[1].country_code | HK |
| authorships[0].institutions[1].display_name | University of Hong Kong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shuyao Qi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, the University of Hong Kong, Hong Kong |
| authorships[1].author.id | https://openalex.org/A5102013176 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7901-9876 |
| authorships[1].author.display_name | Dingming Wu |
| authorships[1].countries | CN, HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science & Software Engineering, Shenzhen University, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I889458895 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer Science, University of Hong Kong, Hong Kong |
| authorships[1].institutions[0].id | https://openalex.org/I180726961 |
| authorships[1].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen University |
| authorships[1].institutions[1].id | https://openalex.org/I889458895 |
| authorships[1].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[1].institutions[1].country_code | HK |
| authorships[1].institutions[1].display_name | University of Hong Kong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dingming Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science & Software Engineering, Shenzhen University, China, Department of Computer Science, University of Hong Kong, Hong Kong |
| authorships[2].author.id | https://openalex.org/A5045731304 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nikos Mamoulis |
| authorships[2].countries | GR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I194019607 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University of Ioannina |
| authorships[2].institutions[0].id | https://openalex.org/I194019607 |
| authorships[2].institutions[0].ror | https://ror.org/01qg3j183 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I194019607 |
| authorships[2].institutions[0].country_code | GR |
| authorships[2].institutions[0].display_name | University of Ioannina |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Nikos Mamoulis |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, University of Ioannina |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://zenodo.org/record/3453302 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Location Aware Keyword Query Suggestion Based on Document Proximity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11106 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Data Management and Algorithms |
| related_works | https://openalex.org/W2096359267, https://openalex.org/W1521725692, https://openalex.org/W3008917487, https://openalex.org/W2901901036, https://openalex.org/W3197639690, https://openalex.org/W2026738364, https://openalex.org/W2572349046, https://openalex.org/W2186487484, https://openalex.org/W2265922065, https://openalex.org/W196521230 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 4 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 3 |
| counts_by_year[7].year | 2017 |
| counts_by_year[7].cited_by_count | 4 |
| counts_by_year[8].year | 2016 |
| counts_by_year[8].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:zenodo.org:3453302 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://zenodo.org/record/3453302 |
| primary_location.id | doi:10.1109/tkde.2015.2465391 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S30698027 |
| primary_location.source.issn | 1041-4347, 1558-2191, 2326-3865 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1041-4347 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Knowledge and Data Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320439 |
| primary_location.source.host_organization_name | IEEE Computer Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Knowledge and Data Engineering |
| primary_location.landing_page_url | https://doi.org/10.1109/tkde.2015.2465391 |
| publication_date | 2015-08-13 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2086550423, https://openalex.org/W1975915866, https://openalex.org/W2086378526, https://openalex.org/W4412333935, https://openalex.org/W2124814993, https://openalex.org/W1982858363, https://openalex.org/W2042281163, https://openalex.org/W2069870183, https://openalex.org/W2036708738, https://openalex.org/W2061296752, https://openalex.org/W2049028959, https://openalex.org/W1997922049, https://openalex.org/W2133576408, https://openalex.org/W1972645849, https://openalex.org/W1564094940, https://openalex.org/W2133299088, https://openalex.org/W2077943220, https://openalex.org/W2126124689, https://openalex.org/W1529421386, https://openalex.org/W2051381393, https://openalex.org/W2069153192, https://openalex.org/W2039191721, https://openalex.org/W2029249040, https://openalex.org/W2066636486, https://openalex.org/W2098759550, https://openalex.org/W2115941024, https://openalex.org/W2128699418, https://openalex.org/W2071898519, https://openalex.org/W2099568195, https://openalex.org/W2037562342, https://openalex.org/W7349048, https://openalex.org/W2160555926, https://openalex.org/W2171743956, https://openalex.org/W2098326081, https://openalex.org/W2153190022, https://openalex.org/W2017328855, https://openalex.org/W2026030496, https://openalex.org/W2011373486, https://openalex.org/W2094450455, https://openalex.org/W2149609569, https://openalex.org/W1973867972, https://openalex.org/W2116133147, https://openalex.org/W2144882256, https://openalex.org/W2052747182, https://openalex.org/W2167275936, https://openalex.org/W2164742922, https://openalex.org/W103340358, https://openalex.org/W2145872245, https://openalex.org/W2026738364, https://openalex.org/W1971005684, https://openalex.org/W2286668413, https://openalex.org/W2117079628, https://openalex.org/W2122872794 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 42, 52, 87, 95, 125, 146 |
| abstract_inverted_index.In | 82 |
| abstract_inverted_index.To | 139 |
| abstract_inverted_index.We | 93 |
| abstract_inverted_index.an | 157 |
| abstract_inverted_index.as | 51, 137 |
| abstract_inverted_index.be | 72 |
| abstract_inverted_index.by | 154 |
| abstract_inverted_index.do | 25 |
| abstract_inverted_index.in | 2, 54, 63, 124 |
| abstract_inverted_index.is | 48, 69, 122 |
| abstract_inverted_index.of | 30, 41, 60, 159, 163, 169 |
| abstract_inverted_index.to | 7, 13, 16, 44, 71, 78, 128, 156 |
| abstract_inverted_index.up | 155 |
| abstract_inverted_index.we | 85, 144 |
| abstract_inverted_index.The | 120, 161 |
| abstract_inverted_index.and | 33, 108, 116, 166 |
| abstract_inverted_index.are | 172 |
| abstract_inverted_index.how | 15 |
| abstract_inverted_index.not | 26, 49 |
| abstract_inverted_index.our | 141, 164 |
| abstract_inverted_index.the | 28, 31, 34, 38, 45, 55, 58, 79, 102, 109, 113, 117, 130, 134, 151, 167, 170 |
| abstract_inverted_index.web | 3 |
| abstract_inverted_index.both | 101 |
| abstract_inverted_index.know | 14 |
| abstract_inverted_index.make | 140 |
| abstract_inverted_index.many | 64 |
| abstract_inverted_index.real | 175 |
| abstract_inverted_index.that | 149 |
| abstract_inverted_index.this | 83 |
| abstract_inverted_index.user | 43, 118 |
| abstract_inverted_index.with | 74, 133 |
| abstract_inverted_index.data. | 176 |
| abstract_inverted_index.graph | 121 |
| abstract_inverted_index.helps | 5 |
| abstract_inverted_index.i.e., | 37 |
| abstract_inverted_index.known | 70 |
| abstract_inverted_index.order | 158 |
| abstract_inverted_index.query | 35, 80, 90 |
| abstract_inverted_index.taken | 50 |
| abstract_inverted_index.their | 19, 75 |
| abstract_inverted_index.users | 6, 32 |
| abstract_inverted_index.using | 174 |
| abstract_inverted_index.which | 99 |
| abstract_inverted_index.(e.g., | 66 |
| abstract_inverted_index.access | 8 |
| abstract_inverted_index.design | 86 |
| abstract_inverted_index.factor | 53 |
| abstract_inverted_index.graph, | 98 |
| abstract_inverted_index.having | 12 |
| abstract_inverted_index.paper, | 84 |
| abstract_inverted_index.scores | 136 |
| abstract_inverted_index.search | 4, 61 |
| abstract_inverted_index.select | 129 |
| abstract_inverted_index.Keyword | 0 |
| abstract_inverted_index.between | 105, 112 |
| abstract_inverted_index.browsed | 123 |
| abstract_inverted_index.express | 18 |
| abstract_inverted_index.highest | 135 |
| abstract_inverted_index.issuer. | 81 |
| abstract_inverted_index.keyword | 22, 89, 106, 131 |
| abstract_inverted_index.propose | 94, 145 |
| abstract_inverted_index.queries | 107, 132 |
| abstract_inverted_index.results | 47, 62 |
| abstract_inverted_index.spatial | 39, 76, 110 |
| abstract_inverted_index.without | 11 |
| abstract_inverted_index.Existing | 21 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.approach | 148 |
| abstract_inverted_index.baseline | 152 |
| abstract_inverted_index.captures | 100 |
| abstract_inverted_index.consider | 27 |
| abstract_inverted_index.distance | 111 |
| abstract_inverted_index.fashion, | 127 |
| abstract_inverted_index.queries. | 20 |
| abstract_inverted_index.relevant | 9 |
| abstract_inverted_index.results; | 36 |
| abstract_inverted_index.semantic | 103 |
| abstract_inverted_index.weighted | 96 |
| abstract_inverted_index.algorithm | 153 |
| abstract_inverted_index.documents | 115 |
| abstract_inverted_index.evaluated | 173 |
| abstract_inverted_index.framework | 142, 165 |
| abstract_inverted_index.location. | 119 |
| abstract_inverted_index.locations | 29 |
| abstract_inverted_index.precisely | 17 |
| abstract_inverted_index.proximity | 40, 77 |
| abstract_inverted_index.relevance | 59, 104 |
| abstract_inverted_index.resulting | 114 |
| abstract_inverted_index.retrieved | 46 |
| abstract_inverted_index.scalable, | 143 |
| abstract_inverted_index.services) | 68 |
| abstract_inverted_index.algorithms | 171 |
| abstract_inverted_index.correlated | 73 |
| abstract_inverted_index.framework. | 92 |
| abstract_inverted_index.magnitude. | 160 |
| abstract_inverted_index.suggestion | 1, 23, 91 |
| abstract_inverted_index.techniques | 24 |
| abstract_inverted_index.information | 10 |
| abstract_inverted_index.outperforms | 150 |
| abstract_inverted_index.performance | 168 |
| abstract_inverted_index.applications | 65 |
| abstract_inverted_index.suggestions. | 138 |
| abstract_inverted_index.location-aware | 88 |
| abstract_inverted_index.location-based | 67 |
| abstract_inverted_index.appropriateness | 162 |
| abstract_inverted_index.partition-based | 147 |
| abstract_inverted_index.recommendation. | 56 |
| abstract_inverted_index.keyword-document | 97 |
| abstract_inverted_index.random-walk-with-restart | 126 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.89658596 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |