Location-Aware Visual Question Generation with Lightweight Models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2023.emnlp-main.88
This work introduces a novel task, location-aware visual question generation (LocaVQG), which aims to generate engaging questions from data relevant to a particular geographical location. Specifically, we represent such location-aware information with surrounding images and a GPS coordinate. To tackle this task, we present a dataset generation pipeline that leverages GPT-4 to produce diverse and sophisticated questions. Then, we aim to learn a lightweight model that can address the LocaVQG task and fit on an edge device, such as a mobile phone. To this end, we propose a method which can reliably generate engaging questions from location-aware information. Our proposed method outperforms baselines regarding human evaluation (e.g., engagement, grounding, coherence) and automatic evaluation metrics (e.g., BERTScore, ROUGE-2). Moreover, we conduct extensive ablation studies to justify our proposed techniques for both generating the dataset and solving the task.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2023.emnlp-main.88
- https://aclanthology.org/2023.emnlp-main.88.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389523798
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389523798Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2023.emnlp-main.88Digital Object Identifier
- Title
-
Location-Aware Visual Question Generation with Lightweight ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Nicholas Collin Suwono, Justin Chen, Tun Min Hung, Ting-Hao Huang, I-Bin Liao, Yung‐Hui Li, Lun‐Wei Ku, Shao-Hua SunList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2023.emnlp-main.88Publisher landing page
- PDF URL
-
https://aclanthology.org/2023.emnlp-main.88.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2023.emnlp-main.88.pdfDirect OA link when available
- Concepts
-
Computer science, Pipeline (software), Task (project management), Global Positioning System, Human–computer interaction, Artificial intelligence, Task analysis, Machine learning, Information retrieval, Data science, Telecommunications, Economics, Programming language, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389523798 |
|---|---|
| doi | https://doi.org/10.18653/v1/2023.emnlp-main.88 |
| ids.doi | https://doi.org/10.18653/v1/2023.emnlp-main.88 |
| ids.openalex | https://openalex.org/W4389523798 |
| fwci | 0.54590502 |
| type | article |
| title | Location-Aware Visual Question Generation with Lightweight Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1432 |
| biblio.first_page | 1415 |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9921000003814697 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.989799976348877 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.864845871925354 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C43521106 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6752869486808777 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[1].display_name | Pipeline (software) |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6682891845703125 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C60229501 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5397942662239075 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q18822 |
| concepts[3].display_name | Global Positioning System |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.434330552816391 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4262901246547699 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C175154964 |
| concepts[6].level | 3 |
| concepts[6].score | 0.41608190536499023 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q380077 |
| concepts[6].display_name | Task analysis |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.401394248008728 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C23123220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3927229642868042 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[8].display_name | Information retrieval |
| concepts[9].id | https://openalex.org/C2522767166 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3390727639198303 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[9].display_name | Data science |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| concepts[11].id | https://openalex.org/C162324750 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[11].display_name | Economics |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| concepts[13].id | https://openalex.org/C187736073 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[13].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.864845871925354 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pipeline |
| keywords[1].score | 0.6752869486808777 |
| keywords[1].display_name | Pipeline (software) |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.6682891845703125 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/global-positioning-system |
| keywords[3].score | 0.5397942662239075 |
| keywords[3].display_name | Global Positioning System |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.434330552816391 |
| keywords[4].display_name | Human–computer interaction |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4262901246547699 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/task-analysis |
| keywords[6].score | 0.41608190536499023 |
| keywords[6].display_name | Task analysis |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.401394248008728 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/information-retrieval |
| keywords[8].score | 0.3927229642868042 |
| keywords[8].display_name | Information retrieval |
| keywords[9].id | https://openalex.org/keywords/data-science |
| keywords[9].score | 0.3390727639198303 |
| keywords[9].display_name | Data science |
| language | en |
| locations[0].id | doi:10.18653/v1/2023.emnlp-main.88 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2023.emnlp-main.88.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2023.emnlp-main.88 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5093123230 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nicholas Collin Suwono |
| authorships[0].countries | TW, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210098366 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Information Science, Academia Sinica |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I130769515 |
| authorships[0].affiliations[1].raw_affiliation_string | Pennsylvania State University |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I16733864 |
| authorships[0].affiliations[2].raw_affiliation_string | National Taiwan University |
| authorships[0].institutions[0].id | https://openalex.org/I4210098366 |
| authorships[0].institutions[0].ror | https://ror.org/00z83z196 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210098366, https://openalex.org/I84653119 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | Institute of Information Science, Academia Sinica |
| authorships[0].institutions[1].id | https://openalex.org/I16733864 |
| authorships[0].institutions[1].ror | https://ror.org/05bqach95 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I16733864 |
| authorships[0].institutions[1].country_code | TW |
| authorships[0].institutions[1].display_name | National Taiwan University |
| authorships[0].institutions[2].id | https://openalex.org/I130769515 |
| authorships[0].institutions[2].ror | https://ror.org/04p491231 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I130769515 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | Pennsylvania State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nicholas Suwono |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Information Science, Academia Sinica, National Taiwan University, Pennsylvania State University |
| authorships[1].author.id | https://openalex.org/A5100616988 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0827-5872 |
| authorships[1].author.display_name | Justin Chen |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16733864 |
| authorships[1].affiliations[0].raw_affiliation_string | National Taiwan University |
| authorships[1].institutions[0].id | https://openalex.org/I16733864 |
| authorships[1].institutions[0].ror | https://ror.org/05bqach95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16733864 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | National Taiwan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Justin Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Taiwan University |
| authorships[2].author.id | https://openalex.org/A5058006819 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tun Min Hung |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I16733864 |
| authorships[2].affiliations[0].raw_affiliation_string | National Taiwan University |
| authorships[2].institutions[0].id | https://openalex.org/I16733864 |
| authorships[2].institutions[0].ror | https://ror.org/05bqach95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I16733864 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | National Taiwan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tun Hung |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Taiwan University |
| authorships[3].author.id | https://openalex.org/A5083675499 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7021-4627 |
| authorships[3].author.display_name | Ting-Hao Huang |
| authorships[3].affiliations[0].raw_affiliation_string | Hon Hai Research Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ting-Hao Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hon Hai Research Institute |
| authorships[4].author.id | https://openalex.org/A5081460934 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | I-Bin Liao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | I-Bin Liao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5048205934 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0475-3689 |
| authorships[5].author.display_name | Yung‐Hui Li |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yung-Hui Li |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5029671916 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2691-5404 |
| authorships[6].author.display_name | Lun‐Wei Ku |
| authorships[6].countries | TW |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I16733864 |
| authorships[6].affiliations[0].raw_affiliation_string | National Taiwan University |
| authorships[6].institutions[0].id | https://openalex.org/I16733864 |
| authorships[6].institutions[0].ror | https://ror.org/05bqach95 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I16733864 |
| authorships[6].institutions[0].country_code | TW |
| authorships[6].institutions[0].display_name | National Taiwan University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Lun-Wei Ku |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | National Taiwan University |
| authorships[7].author.id | https://openalex.org/A5101181948 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Shao-Hua Sun |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Shao-Hua Sun |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2023.emnlp-main.88.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Location-Aware Visual Question Generation with Lightweight Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W3196817267, https://openalex.org/W1564680838, https://openalex.org/W2003125260, https://openalex.org/W2060591604, https://openalex.org/W2166791242, https://openalex.org/W3012440055, https://openalex.org/W2585162246, https://openalex.org/W2034202275, https://openalex.org/W1934413089, https://openalex.org/W1992291644 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2023.emnlp-main.88 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2023.emnlp-main.88.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2023.emnlp-main.88 |
| primary_location.id | doi:10.18653/v1/2023.emnlp-main.88 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2023.emnlp-main.88.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2023.emnlp-main.88 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3030163527, https://openalex.org/W3211777899, https://openalex.org/W2896457183, https://openalex.org/W4288089799, https://openalex.org/W3034457371, https://openalex.org/W2986367395, https://openalex.org/W4292779060, https://openalex.org/W4283026156, https://openalex.org/W4312846625, https://openalex.org/W3199241049, https://openalex.org/W3096682293, https://openalex.org/W4322718191, https://openalex.org/W3211861419, https://openalex.org/W4327810158, https://openalex.org/W4285162225, https://openalex.org/W2936695845, https://openalex.org/W2963748441, https://openalex.org/W3172205429, https://openalex.org/W4385572743, https://openalex.org/W2250777616, https://openalex.org/W3167118264, https://openalex.org/W2121765205, https://openalex.org/W4387782141, https://openalex.org/W2154652894, https://openalex.org/W4360891295, https://openalex.org/W3035252911, https://openalex.org/W3174542349, https://openalex.org/W4362655923, https://openalex.org/W2963881583, https://openalex.org/W4281633595, https://openalex.org/W639708223, https://openalex.org/W4285042965, https://openalex.org/W4378509449, https://openalex.org/W2963351776, https://openalex.org/W4286910290, https://openalex.org/W4323655724 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 3, 21, 35, 44, 62, 79, 87 |
| abstract_inverted_index.To | 38, 82 |
| abstract_inverted_index.an | 74 |
| abstract_inverted_index.as | 78 |
| abstract_inverted_index.on | 73 |
| abstract_inverted_index.to | 13, 20, 51, 60, 123 |
| abstract_inverted_index.we | 26, 42, 58, 85, 118 |
| abstract_inverted_index.GPS | 36 |
| abstract_inverted_index.Our | 98 |
| abstract_inverted_index.aim | 59 |
| abstract_inverted_index.and | 34, 54, 71, 110, 133 |
| abstract_inverted_index.can | 66, 90 |
| abstract_inverted_index.fit | 72 |
| abstract_inverted_index.for | 128 |
| abstract_inverted_index.our | 125 |
| abstract_inverted_index.the | 68, 131, 135 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.aims | 12 |
| abstract_inverted_index.both | 129 |
| abstract_inverted_index.data | 18 |
| abstract_inverted_index.edge | 75 |
| abstract_inverted_index.end, | 84 |
| abstract_inverted_index.from | 17, 95 |
| abstract_inverted_index.such | 28, 77 |
| abstract_inverted_index.task | 70 |
| abstract_inverted_index.that | 48, 65 |
| abstract_inverted_index.this | 40, 83 |
| abstract_inverted_index.with | 31 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.GPT-4 | 50 |
| abstract_inverted_index.Then, | 57 |
| abstract_inverted_index.human | 104 |
| abstract_inverted_index.learn | 61 |
| abstract_inverted_index.model | 64 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.task, | 5, 41 |
| abstract_inverted_index.task. | 136 |
| abstract_inverted_index.which | 11, 89 |
| abstract_inverted_index.(e.g., | 106, 114 |
| abstract_inverted_index.images | 33 |
| abstract_inverted_index.method | 88, 100 |
| abstract_inverted_index.mobile | 80 |
| abstract_inverted_index.phone. | 81 |
| abstract_inverted_index.tackle | 39 |
| abstract_inverted_index.visual | 7 |
| abstract_inverted_index.LocaVQG | 69 |
| abstract_inverted_index.address | 67 |
| abstract_inverted_index.conduct | 119 |
| abstract_inverted_index.dataset | 45, 132 |
| abstract_inverted_index.device, | 76 |
| abstract_inverted_index.diverse | 53 |
| abstract_inverted_index.justify | 124 |
| abstract_inverted_index.metrics | 113 |
| abstract_inverted_index.present | 43 |
| abstract_inverted_index.produce | 52 |
| abstract_inverted_index.propose | 86 |
| abstract_inverted_index.solving | 134 |
| abstract_inverted_index.studies | 122 |
| abstract_inverted_index.ablation | 121 |
| abstract_inverted_index.engaging | 15, 93 |
| abstract_inverted_index.generate | 14, 92 |
| abstract_inverted_index.pipeline | 47 |
| abstract_inverted_index.proposed | 99, 126 |
| abstract_inverted_index.question | 8 |
| abstract_inverted_index.relevant | 19 |
| abstract_inverted_index.reliably | 91 |
| abstract_inverted_index.Moreover, | 117 |
| abstract_inverted_index.ROUGE-2). | 116 |
| abstract_inverted_index.automatic | 111 |
| abstract_inverted_index.baselines | 102 |
| abstract_inverted_index.extensive | 120 |
| abstract_inverted_index.leverages | 49 |
| abstract_inverted_index.location. | 24 |
| abstract_inverted_index.questions | 16, 94 |
| abstract_inverted_index.regarding | 103 |
| abstract_inverted_index.represent | 27 |
| abstract_inverted_index.(LocaVQG), | 10 |
| abstract_inverted_index.BERTScore, | 115 |
| abstract_inverted_index.coherence) | 109 |
| abstract_inverted_index.evaluation | 105, 112 |
| abstract_inverted_index.generating | 130 |
| abstract_inverted_index.generation | 9, 46 |
| abstract_inverted_index.grounding, | 108 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.particular | 22 |
| abstract_inverted_index.questions. | 56 |
| abstract_inverted_index.techniques | 127 |
| abstract_inverted_index.coordinate. | 37 |
| abstract_inverted_index.engagement, | 107 |
| abstract_inverted_index.information | 30 |
| abstract_inverted_index.lightweight | 63 |
| abstract_inverted_index.outperforms | 101 |
| abstract_inverted_index.surrounding | 32 |
| abstract_inverted_index.geographical | 23 |
| abstract_inverted_index.information. | 97 |
| abstract_inverted_index.Specifically, | 25 |
| abstract_inverted_index.sophisticated | 55 |
| abstract_inverted_index.location-aware | 6, 29, 96 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.65430087 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |