LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/lra.2022.3181357
Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the limitations of onboard computation and memory resources needed for autonomous operation. In this work, we present LOCUS 2.0, a robust and computationally-efficient \lidar odometry system for real-time underground 3D mapping. LOCUS 2.0 includes a novel normals-based \morrell{Generalized Iterative Closest Point (GICP)} formulation that reduces the computation time of point cloud alignment, an adaptive voxel grid filter that maintains the desired computation load regardless of the environment's geometry, and a sliding-window map approach that bounds the memory consumption. The proposed approach is shown to be suitable to be deployed on heterogeneous robotic platforms involved in large-scale explorations under severe computation and memory constraints. We demonstrate LOCUS 2.0, a key element of the CoSTAR team's entry in the DARPA Subterranean Challenge, across various underground scenarios. We release LOCUS 2.0 as an open-source library and also release a \lidar-based odometry dataset in challenging and large-scale underground environments. The dataset features legged and wheeled platforms in multiple environments including fog, dust, darkness, and geometrically degenerate surroundings with a total of $11~h$ of operations and $16~km$ of distance traveled.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/lra.2022.3181357
- OA Status
- green
- Cited By
- 86
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281555123
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281555123Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/lra.2022.3181357Digital Object Identifier
- Title
-
LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D MappingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-10Full publication date if available
- Authors
-
Andrzej Reinke, Matteo Palieri, Benjamin Morrell, Yun Chang, Kamak Ebadi, Luca Carlone, Ali–akbar Agha–mohammadiList of authors in order
- Landing page
-
https://doi.org/10.1109/lra.2022.3181357Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.11784Direct OA link when available
- Concepts
-
Odometry, Computer science, Computation, Point cloud, Lidar, Computer vision, Artificial intelligence, Robot, Real-time computing, Mobile robot, Remote sensing, Algorithm, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
86Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 16, 2024: 38, 2023: 29, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281555123 |
|---|---|
| doi | https://doi.org/10.1109/lra.2022.3181357 |
| ids.doi | https://doi.org/10.1109/lra.2022.3181357 |
| ids.openalex | https://openalex.org/W4281555123 |
| fwci | 29.08354546 |
| type | article |
| title | LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping |
| awards[0].id | https://openalex.org/G3648211085 |
| awards[0].funder_id | https://openalex.org/F4320306101 |
| awards[0].display_name | |
| awards[0].funder_award_id | 80NM0018D0004 |
| awards[0].funder_display_name | National Aeronautics and Space Administration |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | 9050 |
| biblio.first_page | 9043 |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10326 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Indoor and Outdoor Localization Technologies |
| topics[2].id | https://openalex.org/T11211 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1907 |
| topics[2].subfield.display_name | Geology |
| topics[2].display_name | 3D Surveying and Cultural Heritage |
| funders[0].id | https://openalex.org/F4320306101 |
| funders[0].ror | https://ror.org/027ka1x80 |
| funders[0].display_name | National Aeronautics and Space Administration |
| funders[1].id | https://openalex.org/F4320332180 |
| funders[1].ror | https://ror.org/02caytj08 |
| funders[1].display_name | Defense Advanced Research Projects Agency |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C49441653 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7619264125823975 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2014717 |
| concepts[0].display_name | Odometry |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6849295496940613 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C45374587 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6680132746696472 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[2].display_name | Computation |
| concepts[3].id | https://openalex.org/C131979681 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6031525135040283 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[3].display_name | Point cloud |
| concepts[4].id | https://openalex.org/C51399673 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5709351301193237 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[4].display_name | Lidar |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5385021567344666 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5098954439163208 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C90509273 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46112769842147827 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[7].display_name | Robot |
| concepts[8].id | https://openalex.org/C79403827 |
| concepts[8].level | 1 |
| concepts[8].score | 0.43570876121520996 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[8].display_name | Real-time computing |
| concepts[9].id | https://openalex.org/C19966478 |
| concepts[9].level | 3 |
| concepts[9].score | 0.341368705034256 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[9].display_name | Mobile robot |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2620692551136017 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.24351432919502258 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.18682241439819336 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/odometry |
| keywords[0].score | 0.7619264125823975 |
| keywords[0].display_name | Odometry |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6849295496940613 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computation |
| keywords[2].score | 0.6680132746696472 |
| keywords[2].display_name | Computation |
| keywords[3].id | https://openalex.org/keywords/point-cloud |
| keywords[3].score | 0.6031525135040283 |
| keywords[3].display_name | Point cloud |
| keywords[4].id | https://openalex.org/keywords/lidar |
| keywords[4].score | 0.5709351301193237 |
| keywords[4].display_name | Lidar |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5385021567344666 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5098954439163208 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/robot |
| keywords[7].score | 0.46112769842147827 |
| keywords[7].display_name | Robot |
| keywords[8].id | https://openalex.org/keywords/real-time-computing |
| keywords[8].score | 0.43570876121520996 |
| keywords[8].display_name | Real-time computing |
| keywords[9].id | https://openalex.org/keywords/mobile-robot |
| keywords[9].score | 0.341368705034256 |
| keywords[9].display_name | Mobile robot |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.2620692551136017 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.24351432919502258 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.18682241439819336 |
| keywords[12].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1109/lra.2022.3181357 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210169774 |
| locations[0].source.issn | 2377-3766 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2377-3766 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Robotics and Automation Letters |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Robotics and Automation Letters |
| locations[0].landing_page_url | https://doi.org/10.1109/lra.2022.3181357 |
| locations[1].id | pmh:oai:arXiv.org:2205.11784 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2205.11784 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2205.11784 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5035632598 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6905-200X |
| authorships[0].author.display_name | Andrzej Reinke |
| authorships[0].countries | DE, US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135140700 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Bonn, Bonn, Germany |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I1334627681 |
| authorships[0].affiliations[1].raw_affiliation_string | NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I135140700 |
| authorships[0].institutions[0].ror | https://ror.org/041nas322 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | University of Bonn |
| authorships[0].institutions[1].id | https://openalex.org/I1334627681 |
| authorships[0].institutions[1].ror | https://ror.org/027k65916 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I122411786, https://openalex.org/I1334627681, https://openalex.org/I4210124779 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Jet Propulsion Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Andrzej Reinke |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, University of Bonn, Bonn, Germany |
| authorships[1].author.id | https://openalex.org/A5043798706 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8218-3346 |
| authorships[1].author.display_name | Matteo Palieri |
| authorships[1].countries | IT, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I68618741 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari, Italy |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I1334627681 |
| authorships[1].affiliations[1].raw_affiliation_string | NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I68618741 |
| authorships[1].institutions[0].ror | https://ror.org/03c44v465 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I68618741 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | Polytechnic University of Bari |
| authorships[1].institutions[1].id | https://openalex.org/I1334627681 |
| authorships[1].institutions[1].ror | https://ror.org/027k65916 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I122411786, https://openalex.org/I1334627681, https://openalex.org/I4210124779 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Jet Propulsion Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Matteo Palieri |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari, Italy, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA |
| authorships[2].author.id | https://openalex.org/A5058359768 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9768-3615 |
| authorships[2].author.display_name | Benjamin Morrell |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1334627681 |
| authorships[2].affiliations[0].raw_affiliation_string | NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1334627681 |
| authorships[2].institutions[0].ror | https://ror.org/027k65916 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I122411786, https://openalex.org/I1334627681, https://openalex.org/I4210124779 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Jet Propulsion Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Benjamin Morrell |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA |
| authorships[3].author.id | https://openalex.org/A5082750695 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2829-5256 |
| authorships[3].author.display_name | Yun Chang |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I46020346, https://openalex.org/I63966007 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I46020346 |
| authorships[3].institutions[0].ror | https://ror.org/00a1rzv11 |
| authorships[3].institutions[0].type | other |
| authorships[3].institutions[0].lineage | https://openalex.org/I46020346 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | American Institute of Aeronautics and Astronautics |
| authorships[3].institutions[1].id | https://openalex.org/I63966007 |
| authorships[3].institutions[1].ror | https://ror.org/042nb2s44 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I63966007 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Massachusetts Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yun Chang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA |
| authorships[4].author.id | https://openalex.org/A5024992136 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4094-7077 |
| authorships[4].author.display_name | Kamak Ebadi |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1334627681 |
| authorships[4].affiliations[0].raw_affiliation_string | NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1334627681 |
| authorships[4].institutions[0].ror | https://ror.org/027k65916 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I122411786, https://openalex.org/I1334627681, https://openalex.org/I4210124779 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Jet Propulsion Laboratory |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kamak Ebadi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA |
| authorships[5].author.id | https://openalex.org/A5042157108 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Luca Carlone |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I46020346, https://openalex.org/I63966007 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I46020346 |
| authorships[5].institutions[0].ror | https://ror.org/00a1rzv11 |
| authorships[5].institutions[0].type | other |
| authorships[5].institutions[0].lineage | https://openalex.org/I46020346 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | American Institute of Aeronautics and Astronautics |
| authorships[5].institutions[1].id | https://openalex.org/I63966007 |
| authorships[5].institutions[1].ror | https://ror.org/042nb2s44 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I63966007 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | Massachusetts Institute of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Luca Carlone |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA |
| authorships[6].author.id | https://openalex.org/A5042186658 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5509-1841 |
| authorships[6].author.display_name | Ali–akbar Agha–mohammadi |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1334627681 |
| authorships[6].affiliations[0].raw_affiliation_string | NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA |
| authorships[6].institutions[0].id | https://openalex.org/I1334627681 |
| authorships[6].institutions[0].ror | https://ror.org/027k65916 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I122411786, https://openalex.org/I1334627681, https://openalex.org/I4210124779 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Jet Propulsion Laboratory |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ali-Akbar Agha-Mohammadi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.11784 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-27T00:00:00 |
| display_name | LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time 3D Mapping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W4293094720, https://openalex.org/W2739701376, https://openalex.org/W4313854656, https://openalex.org/W2724195622, https://openalex.org/W4205669743, https://openalex.org/W4200210047, https://openalex.org/W1969991288, https://openalex.org/W2551663027, https://openalex.org/W2614963770, https://openalex.org/W1511332864 |
| cited_by_count | 86 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 16 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 38 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 29 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.11784 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.11784 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.11784 |
| primary_location.id | doi:10.1109/lra.2022.3181357 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210169774 |
| primary_location.source.issn | 2377-3766 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2377-3766 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Robotics and Automation Letters |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Robotics and Automation Letters |
| primary_location.landing_page_url | https://doi.org/10.1109/lra.2022.3181357 |
| publication_date | 2022-06-10 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3112226520, https://openalex.org/W6791084763, https://openalex.org/W3196961762, https://openalex.org/W3133767727, https://openalex.org/W2296228853, https://openalex.org/W3182569554, https://openalex.org/W3154158938, https://openalex.org/W3206845495, https://openalex.org/W3159400523, https://openalex.org/W3129245057, https://openalex.org/W3095662029, https://openalex.org/W3091486995, https://openalex.org/W3169350589, https://openalex.org/W4210423514, https://openalex.org/W3201923677, https://openalex.org/W3181051035, https://openalex.org/W4249866455, https://openalex.org/W2152864241, https://openalex.org/W3007240855, https://openalex.org/W6792068349, https://openalex.org/W3132921302, https://openalex.org/W2979307260, https://openalex.org/W4287262265 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 7, 56, 71, 106, 144, 172, 201 |
| abstract_inverted_index.3D | 66 |
| abstract_inverted_index.In | 49 |
| abstract_inverted_index.We | 140, 161 |
| abstract_inverted_index.an | 32, 89, 166 |
| abstract_inverted_index.as | 6, 165 |
| abstract_inverted_index.be | 121, 124 |
| abstract_inverted_index.in | 15, 28, 131, 152, 176, 189 |
| abstract_inverted_index.is | 118 |
| abstract_inverted_index.of | 39, 85, 101, 147, 203, 205, 209 |
| abstract_inverted_index.on | 25, 126 |
| abstract_inverted_index.to | 36, 120, 123 |
| abstract_inverted_index.we | 52 |
| abstract_inverted_index.2.0 | 69, 164 |
| abstract_inverted_index.The | 115, 182 |
| abstract_inverted_index.and | 22, 42, 58, 105, 137, 169, 178, 186, 196, 207 |
| abstract_inverted_index.due | 35 |
| abstract_inverted_index.for | 11, 46, 63 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.key | 145 |
| abstract_inverted_index.map | 108 |
| abstract_inverted_index.the | 37, 82, 96, 102, 112, 148, 153 |
| abstract_inverted_index.2.0, | 55, 143 |
| abstract_inverted_index.also | 170 |
| abstract_inverted_index.fog, | 193 |
| abstract_inverted_index.grid | 92 |
| abstract_inverted_index.load | 99 |
| abstract_inverted_index.open | 33 |
| abstract_inverted_index.that | 80, 94, 110 |
| abstract_inverted_index.this | 50 |
| abstract_inverted_index.time | 84 |
| abstract_inverted_index.with | 200 |
| abstract_inverted_index.DARPA | 154 |
| abstract_inverted_index.LOCUS | 54, 68, 142, 163 |
| abstract_inverted_index.Lidar | 0 |
| abstract_inverted_index.Point | 77 |
| abstract_inverted_index.cloud | 87 |
| abstract_inverted_index.dust, | 194 |
| abstract_inverted_index.entry | 151 |
| abstract_inverted_index.novel | 72 |
| abstract_inverted_index.point | 86 |
| abstract_inverted_index.shown | 119 |
| abstract_inverted_index.total | 202 |
| abstract_inverted_index.under | 134 |
| abstract_inverted_index.voxel | 91 |
| abstract_inverted_index.work, | 51 |
| abstract_inverted_index.$11~h$ | 204 |
| abstract_inverted_index.CoSTAR | 149 |
| abstract_inverted_index.\lidar | 60 |
| abstract_inverted_index.across | 157 |
| abstract_inverted_index.bounds | 111 |
| abstract_inverted_index.filter | 93 |
| abstract_inverted_index.legged | 185 |
| abstract_inverted_index.memory | 43, 113, 138 |
| abstract_inverted_index.method | 10 |
| abstract_inverted_index.needed | 45 |
| abstract_inverted_index.robots | 13 |
| abstract_inverted_index.robust | 8, 57 |
| abstract_inverted_index.severe | 135 |
| abstract_inverted_index.system | 62 |
| abstract_inverted_index.team's | 150 |
| abstract_inverted_index.$16~km$ | 208 |
| abstract_inverted_index.(GICP)} | 78 |
| abstract_inverted_index.Closest | 76 |
| abstract_inverted_index.complex | 16 |
| abstract_inverted_index.dataset | 175, 183 |
| abstract_inverted_index.desired | 97 |
| abstract_inverted_index.element | 146 |
| abstract_inverted_index.library | 168 |
| abstract_inverted_index.onboard | 40 |
| abstract_inverted_index.present | 53 |
| abstract_inverted_index.reduces | 81 |
| abstract_inverted_index.release | 162, 171 |
| abstract_inverted_index.remains | 31 |
| abstract_inverted_index.robotic | 128 |
| abstract_inverted_index.various | 158 |
| abstract_inverted_index.wheeled | 187 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.adaptive | 90 |
| abstract_inverted_index.approach | 109, 117 |
| abstract_inverted_index.deployed | 125 |
| abstract_inverted_index.distance | 210 |
| abstract_inverted_index.features | 184 |
| abstract_inverted_index.includes | 70 |
| abstract_inverted_index.involved | 130 |
| abstract_inverted_index.mapping. | 67 |
| abstract_inverted_index.multiple | 190 |
| abstract_inverted_index.odometry | 1, 61, 174 |
| abstract_inverted_index.proposed | 116 |
| abstract_inverted_index.reliable | 21 |
| abstract_inverted_index.suitable | 122 |
| abstract_inverted_index.Iterative | 75 |
| abstract_inverted_index.achieving | 20 |
| abstract_inverted_index.attention | 5 |
| abstract_inverted_index.attracted | 3 |
| abstract_inverted_index.challenge | 34 |
| abstract_inverted_index.darkness, | 195 |
| abstract_inverted_index.efficient | 23 |
| abstract_inverted_index.geometry, | 104 |
| abstract_inverted_index.including | 192 |
| abstract_inverted_index.maintains | 95 |
| abstract_inverted_index.operating | 14 |
| abstract_inverted_index.platforms | 27, 129, 188 |
| abstract_inverted_index.real-time | 64 |
| abstract_inverted_index.resources | 44 |
| abstract_inverted_index.traveled. | 211 |
| abstract_inverted_index.Challenge, | 156 |
| abstract_inverted_index.alignment, | 88 |
| abstract_inverted_index.autonomous | 12, 47 |
| abstract_inverted_index.degenerate | 198 |
| abstract_inverted_index.operation. | 48 |
| abstract_inverted_index.operations | 206 |
| abstract_inverted_index.regardless | 100 |
| abstract_inverted_index.scenarios. | 160 |
| abstract_inverted_index.GNSS-denied | 17 |
| abstract_inverted_index.challenging | 177 |
| abstract_inverted_index.computation | 41, 83, 98, 136 |
| abstract_inverted_index.demonstrate | 141 |
| abstract_inverted_index.formulation | 79 |
| abstract_inverted_index.large-scale | 29, 132, 179 |
| abstract_inverted_index.limitations | 38 |
| abstract_inverted_index.open-source | 167 |
| abstract_inverted_index.performance | 24 |
| abstract_inverted_index.underground | 65, 159, 180 |
| abstract_inverted_index.Subterranean | 155 |
| abstract_inverted_index.\lidar-based | 173 |
| abstract_inverted_index.considerable | 4 |
| abstract_inverted_index.constraints. | 139 |
| abstract_inverted_index.consumption. | 114 |
| abstract_inverted_index.environments | 30, 191 |
| abstract_inverted_index.explorations | 133 |
| abstract_inverted_index.localization | 9 |
| abstract_inverted_index.surroundings | 199 |
| abstract_inverted_index.environment's | 103 |
| abstract_inverted_index.environments. | 18, 181 |
| abstract_inverted_index.geometrically | 197 |
| abstract_inverted_index.heterogeneous | 26, 127 |
| abstract_inverted_index.normals-based | 73 |
| abstract_inverted_index.sliding-window | 107 |
| abstract_inverted_index.\morrell{Generalized | 74 |
| abstract_inverted_index.computationally-efficient | 59 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.99761701 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |