Logistic Regression Method for Sarcasm Detection of Text Data Article Swipe
Bipin Kumar Gupta
,
Ankur Gupta
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.5120/ijca2019919451
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.5120/ijca2019919451
The prediction analysis is approach which can predict future possibilities.This research work is based on the sarcasm detection from the text data.In the previous time SVM classification is applied for the sarcasm detection.The SVM classifier classifies data based on the hyper plane which give low accuracy.To improve accuracy for sarcasm detection logistic regression is applied in this work.The existing and proposed techniques are implemented in python and results are analyzed in terms of accuracy, execution time.The proposed approach has high accuracy and low execution time as compared to SVM classifier for sarcasm detection
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5120/ijca2019919451
- https://doi.org/10.5120/ijca2019919451
- OA Status
- diamond
- Cited By
- 1
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2995866224
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2995866224Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5120/ijca2019919451Digital Object Identifier
- Title
-
Logistic Regression Method for Sarcasm Detection of Text DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-17Full publication date if available
- Authors
-
Bipin Kumar Gupta, Ankur GuptaList of authors in order
- Landing page
-
https://doi.org/10.5120/ijca2019919451Publisher landing page
- PDF URL
-
https://doi.org/10.5120/ijca2019919451Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5120/ijca2019919451Direct OA link when available
- Concepts
-
Sarcasm, Computer science, Logistic regression, Artificial intelligence, Machine learning, Natural language processing, Irony, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2995866224 |
|---|---|
| doi | https://doi.org/10.5120/ijca2019919451 |
| ids.doi | https://doi.org/10.5120/ijca2019919451 |
| ids.mag | 2995866224 |
| ids.openalex | https://openalex.org/W2995866224 |
| fwci | 0.0 |
| type | article |
| title | Logistic Regression Method for Sarcasm Detection of Text Data |
| biblio.issue | 26 |
| biblio.volume | 177 |
| biblio.last_page | 4 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10601 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9584000110626221 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Handwritten Text Recognition Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776207355 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9674632549285889 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q191035 |
| concepts[0].display_name | Sarcasm |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8325053453445435 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C151956035 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7892373204231262 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[2].display_name | Logistic regression |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5263023376464844 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36495018005371094 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3367171287536621 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C2779975665 |
| concepts[6].level | 2 |
| concepts[6].score | 0.05307820439338684 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q131361 |
| concepts[6].display_name | Irony |
| concepts[7].id | https://openalex.org/C41895202 |
| concepts[7].level | 1 |
| concepts[7].score | 0.05248108506202698 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[7].display_name | Linguistics |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/sarcasm |
| keywords[0].score | 0.9674632549285889 |
| keywords[0].display_name | Sarcasm |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8325053453445435 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/logistic-regression |
| keywords[2].score | 0.7892373204231262 |
| keywords[2].display_name | Logistic regression |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5263023376464844 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.36495018005371094 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.3367171287536621 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/irony |
| keywords[6].score | 0.05307820439338684 |
| keywords[6].display_name | Irony |
| keywords[7].id | https://openalex.org/keywords/linguistics |
| keywords[7].score | 0.05248108506202698 |
| keywords[7].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.5120/ijca2019919451 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210206007 |
| locations[0].source.issn | 0975-8887 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0975-8887 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Computer Applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.5120/ijca2019919451 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computer Applications |
| locations[0].landing_page_url | https://doi.org/10.5120/ijca2019919451 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5042910737 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0176-0007 |
| authorships[0].author.display_name | Bipin Kumar Gupta |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3129196102 |
| authorships[0].affiliations[0].raw_affiliation_string | RIMT University Mandi Gobindgarh, Punjab |
| authorships[0].institutions[0].id | https://openalex.org/I3129196102 |
| authorships[0].institutions[0].ror | https://ror.org/007n0ss86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3129196102 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Desh Bhagat University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bipin Gupta |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | RIMT University Mandi Gobindgarh, Punjab |
| authorships[1].author.id | https://openalex.org/A5070843690 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4651-5830 |
| authorships[1].author.display_name | Ankur Gupta |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3129196102 |
| authorships[1].affiliations[0].raw_affiliation_string | RIMT University Mandi Gobindgarh, Punjab |
| authorships[1].institutions[0].id | https://openalex.org/I3129196102 |
| authorships[1].institutions[0].ror | https://ror.org/007n0ss86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3129196102 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Desh Bhagat University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ankur Gupta |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | RIMT University Mandi Gobindgarh, Punjab |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5120/ijca2019919451 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Logistic Regression Method for Sarcasm Detection of Text Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10601 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9584000110626221 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Handwritten Text Recognition Techniques |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3209574120, https://openalex.org/W3107602296, https://openalex.org/W4312192474, https://openalex.org/W4210805261, https://openalex.org/W4387297750 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5120/ijca2019919451 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210206007 |
| best_oa_location.source.issn | 0975-8887 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0975-8887 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Computer Applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.5120/ijca2019919451 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computer Applications |
| best_oa_location.landing_page_url | https://doi.org/10.5120/ijca2019919451 |
| primary_location.id | doi:10.5120/ijca2019919451 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210206007 |
| primary_location.source.issn | 0975-8887 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0975-8887 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Computer Applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.5120/ijca2019919451 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computer Applications |
| primary_location.landing_page_url | https://doi.org/10.5120/ijca2019919451 |
| publication_date | 2019-12-17 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W1646490235, https://openalex.org/W2084333023, https://openalex.org/W2764130664, https://openalex.org/W2413899610, https://openalex.org/W2613055727, https://openalex.org/W2739970108, https://openalex.org/W2590756584, https://openalex.org/W2621822896, https://openalex.org/W2714275525, https://openalex.org/W2623651690, https://openalex.org/W2138591484 |
| referenced_works_count | 11 |
| abstract_inverted_index.as | 85 |
| abstract_inverted_index.in | 55, 64, 70 |
| abstract_inverted_index.is | 3, 12, 27, 53 |
| abstract_inverted_index.of | 72 |
| abstract_inverted_index.on | 14, 38 |
| abstract_inverted_index.to | 87 |
| abstract_inverted_index.SVM | 25, 33, 88 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 59, 66, 81 |
| abstract_inverted_index.are | 62, 68 |
| abstract_inverted_index.can | 6 |
| abstract_inverted_index.for | 29, 48, 90 |
| abstract_inverted_index.has | 78 |
| abstract_inverted_index.low | 44, 82 |
| abstract_inverted_index.the | 15, 19, 22, 30, 39 |
| abstract_inverted_index.data | 36 |
| abstract_inverted_index.from | 18 |
| abstract_inverted_index.give | 43 |
| abstract_inverted_index.high | 79 |
| abstract_inverted_index.text | 20 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.time | 24, 84 |
| abstract_inverted_index.work | 11 |
| abstract_inverted_index.based | 13, 37 |
| abstract_inverted_index.hyper | 40 |
| abstract_inverted_index.plane | 41 |
| abstract_inverted_index.terms | 71 |
| abstract_inverted_index.which | 5, 42 |
| abstract_inverted_index.future | 8 |
| abstract_inverted_index.python | 65 |
| abstract_inverted_index.applied | 28, 54 |
| abstract_inverted_index.data.In | 21 |
| abstract_inverted_index.improve | 46 |
| abstract_inverted_index.predict | 7 |
| abstract_inverted_index.results | 67 |
| abstract_inverted_index.sarcasm | 16, 31, 49, 91 |
| abstract_inverted_index.accuracy | 47, 80 |
| abstract_inverted_index.analysis | 2 |
| abstract_inverted_index.analyzed | 69 |
| abstract_inverted_index.approach | 4, 77 |
| abstract_inverted_index.compared | 86 |
| abstract_inverted_index.existing | 58 |
| abstract_inverted_index.logistic | 51 |
| abstract_inverted_index.previous | 23 |
| abstract_inverted_index.proposed | 60, 76 |
| abstract_inverted_index.research | 10 |
| abstract_inverted_index.time.The | 75 |
| abstract_inverted_index.work.The | 57 |
| abstract_inverted_index.accuracy, | 73 |
| abstract_inverted_index.detection | 17, 50, 92 |
| abstract_inverted_index.execution | 74, 83 |
| abstract_inverted_index.classifier | 34, 89 |
| abstract_inverted_index.classifies | 35 |
| abstract_inverted_index.prediction | 1 |
| abstract_inverted_index.regression | 52 |
| abstract_inverted_index.techniques | 61 |
| abstract_inverted_index.accuracy.To | 45 |
| abstract_inverted_index.implemented | 63 |
| abstract_inverted_index.detection.The | 32 |
| abstract_inverted_index.classification | 26 |
| abstract_inverted_index.possibilities.This | 9 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5070843690 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I3129196102 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.1464977 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |