LoLCATs: On Low-Rank Linearizing of Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.10254
Recent works show we can linearize large language models (LLMs) -- swapping the quadratic attentions of popular Transformer-based LLMs with subquadratic analogs, such as linear attention -- avoiding the expensive pretraining costs. However, linearizing LLMs often significantly degrades model quality, still requires training over billions of tokens, and remains limited to smaller 1.3B to 7B LLMs. We thus propose Low-rank Linear Conversion via Attention Transfer (LoLCATs), a simple two-step method that improves LLM linearizing quality with orders of magnitudes less memory and compute. We base these steps on two findings. First, we can replace an LLM's softmax attentions with closely-approximating linear attentions, simply by training the linear attentions to match their softmax counterparts with an output MSE loss ("attention transfer"). Then, this enables adjusting for approximation errors and recovering LLM quality simply with low-rank adaptation (LoRA). LoLCATs significantly improves linearizing quality, training efficiency, and scalability. We significantly reduce the linearizing quality gap and produce state-of-the-art subquadratic LLMs from Llama 3 8B and Mistral 7B v0.1, leading to 20+ points of improvement on 5-shot MMLU. Furthermore, LoLCATs does so with only 0.2% of past methods' model parameters and 0.4% of their training tokens. Finally, we apply LoLCATs to create the first linearized 70B and 405B LLMs (50x larger than prior work). When compared with prior approaches under the same compute budgets, LoLCATs significantly improves linearizing quality, closing the gap between linearized and original Llama 3.1 70B and 405B LLMs by 77.8% and 78.1% on 5-shot MMLU.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.10254
- https://arxiv.org/pdf/2410.10254
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403570531
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403570531Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.10254Digital Object Identifier
- Title
-
LoLCATs: On Low-Rank Linearizing of Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-14Full publication date if available
- Authors
-
Michael Zhang, Simran Arora, Rahul Chalamala, Alan Wu, Benjamin Spector, Aaryan Singhal, Krithik Ramesh, Christopher RéList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.10254Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.10254Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.10254Direct OA link when available
- Concepts
-
Rank (graph theory), Computer science, Mathematics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403570531 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.10254 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.10254 |
| ids.openalex | https://openalex.org/W4403570531 |
| fwci | |
| type | preprint |
| title | LoLCATs: On Low-Rank Linearizing of Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9932000041007996 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9814000129699707 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T10201 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9229999780654907 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech Recognition and Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C164226766 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7007718086242676 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[0].display_name | Rank (graph theory) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4769231975078583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.28620293736457825 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C114614502 |
| concepts[3].level | 1 |
| concepts[3].score | 0.04997628927230835 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[3].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/rank |
| keywords[0].score | 0.7007718086242676 |
| keywords[0].display_name | Rank (graph theory) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4769231975078583 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.28620293736457825 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/combinatorics |
| keywords[3].score | 0.04997628927230835 |
| keywords[3].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.10254 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.10254 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.10254 |
| locations[1].id | doi:10.48550/arxiv.2410.10254 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.10254 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100612833 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4647-3888 |
| authorships[0].author.display_name | Michael Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Michael |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075032133 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2087-8043 |
| authorships[1].author.display_name | Simran Arora |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arora, Simran |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114335063 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Rahul Chalamala |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chalamala, Rahul |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5111657827 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Alan Wu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wu, Alan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5004675499 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0468-5986 |
| authorships[4].author.display_name | Benjamin Spector |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Spector, Benjamin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5104346387 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Aaryan Singhal |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Singhal, Aaryan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5114335064 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Krithik Ramesh |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ramesh, Krithik |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5103852640 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Christopher Ré |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ré, Christopher |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.10254 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LoLCATs: On Low-Rank Linearizing of Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9932000041007996 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.10254 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.10254 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.10254 |
| primary_location.id | pmh:oai:arXiv.org:2410.10254 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.10254 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.10254 |
| publication_date | 2024-10-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 159 |
| abstract_inverted_index.a | 66 |
| abstract_inverted_index.-- | 10, 26 |
| abstract_inverted_index.7B | 54, 163 |
| abstract_inverted_index.8B | 160 |
| abstract_inverted_index.We | 56, 83, 145 |
| abstract_inverted_index.an | 94, 114 |
| abstract_inverted_index.as | 23 |
| abstract_inverted_index.by | 103, 238 |
| abstract_inverted_index.of | 15, 45, 77, 169, 181, 188 |
| abstract_inverted_index.on | 87, 171, 242 |
| abstract_inverted_index.so | 177 |
| abstract_inverted_index.to | 50, 53, 108, 166, 196 |
| abstract_inverted_index.we | 3, 91, 193 |
| abstract_inverted_index.20+ | 167 |
| abstract_inverted_index.3.1 | 233 |
| abstract_inverted_index.70B | 201, 234 |
| abstract_inverted_index.LLM | 72, 129 |
| abstract_inverted_index.MSE | 116 |
| abstract_inverted_index.and | 47, 81, 127, 143, 152, 161, 186, 202, 230, 235, 240 |
| abstract_inverted_index.can | 4, 92 |
| abstract_inverted_index.for | 124 |
| abstract_inverted_index.gap | 151, 227 |
| abstract_inverted_index.the | 12, 28, 105, 148, 198, 216, 226 |
| abstract_inverted_index.two | 88 |
| abstract_inverted_index.via | 62 |
| abstract_inverted_index.(50x | 205 |
| abstract_inverted_index.0.2% | 180 |
| abstract_inverted_index.0.4% | 187 |
| abstract_inverted_index.1.3B | 52 |
| abstract_inverted_index.405B | 203, 236 |
| abstract_inverted_index.LLMs | 18, 34, 156, 204, 237 |
| abstract_inverted_index.When | 210 |
| abstract_inverted_index.base | 84 |
| abstract_inverted_index.does | 176 |
| abstract_inverted_index.from | 157 |
| abstract_inverted_index.less | 79 |
| abstract_inverted_index.loss | 117 |
| abstract_inverted_index.only | 179 |
| abstract_inverted_index.over | 43 |
| abstract_inverted_index.past | 182 |
| abstract_inverted_index.same | 217 |
| abstract_inverted_index.show | 2 |
| abstract_inverted_index.such | 22 |
| abstract_inverted_index.than | 207 |
| abstract_inverted_index.that | 70 |
| abstract_inverted_index.this | 121 |
| abstract_inverted_index.thus | 57 |
| abstract_inverted_index.with | 19, 75, 98, 113, 132, 178, 212 |
| abstract_inverted_index.77.8% | 239 |
| abstract_inverted_index.78.1% | 241 |
| abstract_inverted_index.LLM's | 95 |
| abstract_inverted_index.LLMs. | 55 |
| abstract_inverted_index.Llama | 158, 232 |
| abstract_inverted_index.MMLU. | 173, 244 |
| abstract_inverted_index.Then, | 120 |
| abstract_inverted_index.apply | 194 |
| abstract_inverted_index.first | 199 |
| abstract_inverted_index.large | 6 |
| abstract_inverted_index.match | 109 |
| abstract_inverted_index.model | 38, 184 |
| abstract_inverted_index.often | 35 |
| abstract_inverted_index.prior | 208, 213 |
| abstract_inverted_index.steps | 86 |
| abstract_inverted_index.still | 40 |
| abstract_inverted_index.their | 110, 189 |
| abstract_inverted_index.these | 85 |
| abstract_inverted_index.under | 215 |
| abstract_inverted_index.v0.1, | 164 |
| abstract_inverted_index.works | 1 |
| abstract_inverted_index.(LLMs) | 9 |
| abstract_inverted_index.5-shot | 172, 243 |
| abstract_inverted_index.First, | 90 |
| abstract_inverted_index.Linear | 60 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.costs. | 31 |
| abstract_inverted_index.create | 197 |
| abstract_inverted_index.errors | 126 |
| abstract_inverted_index.larger | 206 |
| abstract_inverted_index.linear | 24, 100, 106 |
| abstract_inverted_index.memory | 80 |
| abstract_inverted_index.method | 69 |
| abstract_inverted_index.models | 8 |
| abstract_inverted_index.orders | 76 |
| abstract_inverted_index.output | 115 |
| abstract_inverted_index.points | 168 |
| abstract_inverted_index.reduce | 147 |
| abstract_inverted_index.simple | 67 |
| abstract_inverted_index.simply | 102, 131 |
| abstract_inverted_index.work). | 209 |
| abstract_inverted_index.(LoRA). | 135 |
| abstract_inverted_index.LoLCATs | 136, 175, 195, 220 |
| abstract_inverted_index.Mistral | 162 |
| abstract_inverted_index.between | 228 |
| abstract_inverted_index.closing | 225 |
| abstract_inverted_index.compute | 218 |
| abstract_inverted_index.enables | 122 |
| abstract_inverted_index.leading | 165 |
| abstract_inverted_index.limited | 49 |
| abstract_inverted_index.popular | 16 |
| abstract_inverted_index.produce | 153 |
| abstract_inverted_index.propose | 58 |
| abstract_inverted_index.quality | 74, 130, 150 |
| abstract_inverted_index.remains | 48 |
| abstract_inverted_index.replace | 93 |
| abstract_inverted_index.smaller | 51 |
| abstract_inverted_index.softmax | 96, 111 |
| abstract_inverted_index.tokens, | 46 |
| abstract_inverted_index.tokens. | 191 |
| abstract_inverted_index.Finally, | 192 |
| abstract_inverted_index.However, | 32 |
| abstract_inverted_index.Low-rank | 59 |
| abstract_inverted_index.Transfer | 64 |
| abstract_inverted_index.analogs, | 21 |
| abstract_inverted_index.avoiding | 27 |
| abstract_inverted_index.billions | 44 |
| abstract_inverted_index.budgets, | 219 |
| abstract_inverted_index.compared | 211 |
| abstract_inverted_index.compute. | 82 |
| abstract_inverted_index.degrades | 37 |
| abstract_inverted_index.improves | 71, 138, 222 |
| abstract_inverted_index.language | 7 |
| abstract_inverted_index.low-rank | 133 |
| abstract_inverted_index.methods' | 183 |
| abstract_inverted_index.original | 231 |
| abstract_inverted_index.quality, | 39, 140, 224 |
| abstract_inverted_index.requires | 41 |
| abstract_inverted_index.swapping | 11 |
| abstract_inverted_index.training | 42, 104, 141, 190 |
| abstract_inverted_index.two-step | 68 |
| abstract_inverted_index.Attention | 63 |
| abstract_inverted_index.adjusting | 123 |
| abstract_inverted_index.attention | 25 |
| abstract_inverted_index.expensive | 29 |
| abstract_inverted_index.findings. | 89 |
| abstract_inverted_index.linearize | 5 |
| abstract_inverted_index.quadratic | 13 |
| abstract_inverted_index.(LoLCATs), | 65 |
| abstract_inverted_index.Conversion | 61 |
| abstract_inverted_index.adaptation | 134 |
| abstract_inverted_index.approaches | 214 |
| abstract_inverted_index.attentions | 14, 97, 107 |
| abstract_inverted_index.linearized | 200, 229 |
| abstract_inverted_index.magnitudes | 78 |
| abstract_inverted_index.parameters | 185 |
| abstract_inverted_index.recovering | 128 |
| abstract_inverted_index.("attention | 118 |
| abstract_inverted_index.attentions, | 101 |
| abstract_inverted_index.efficiency, | 142 |
| abstract_inverted_index.improvement | 170 |
| abstract_inverted_index.linearizing | 33, 73, 139, 149, 223 |
| abstract_inverted_index.pretraining | 30 |
| abstract_inverted_index.transfer"). | 119 |
| abstract_inverted_index.Furthermore, | 174 |
| abstract_inverted_index.counterparts | 112 |
| abstract_inverted_index.scalability. | 144 |
| abstract_inverted_index.subquadratic | 20, 155 |
| abstract_inverted_index.approximation | 125 |
| abstract_inverted_index.significantly | 36, 137, 146, 221 |
| abstract_inverted_index.state-of-the-art | 154 |
| abstract_inverted_index.Transformer-based | 17 |
| abstract_inverted_index.closely-approximating | 99 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |