Long-Short-Range Message-Passing: A Physics-Informed Framework to Capture Non-Local Interaction for Scalable Molecular Dynamics Simulation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2304.13542
Computational simulation of chemical and biological systems using ab initio molecular dynamics has been a challenge over decades. Researchers have attempted to address the problem with machine learning and fragmentation-based methods. However, the two approaches fail to give a satisfactory description of long-range and many-body interactions, respectively. Inspired by fragmentation-based methods, we propose the Long-Short-Range Message-Passing (LSR-MP) framework as a generalization of the existing equivariant graph neural networks (EGNNs) with the intent to incorporate long-range interactions efficiently and effectively. We apply the LSR-MP framework to the recently proposed ViSNet and demonstrate the state-of-the-art results with up to 40% MAE reduction for molecules in MD22 and Chignolin datasets. Consistent improvements to various EGNNs will also be discussed to illustrate the general applicability and robustness of our LSR-MP framework. The code for our experiments and trained model weights could be found at https://github.com/liyy2/LSR-MP.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2304.13542
- https://arxiv.org/pdf/2304.13542
- OA Status
- green
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367190754
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367190754Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2304.13542Digital Object Identifier
- Title
-
Long-Short-Range Message-Passing: A Physics-Informed Framework to Capture Non-Local Interaction for Scalable Molecular Dynamics SimulationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-26Full publication date if available
- Authors
-
Yunyang Li, Yusong Wang, Lin Huang, Han Yang, Xinran Wei, Jia Zhang, Tong Wang, Zun Wang, Bin Shao, Tie‐Yan LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2304.13542Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2304.13542Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2304.13542Direct OA link when available
- Concepts
-
Scalability, Computer science, Robustness (evolution), Message passing, Theoretical computer science, Fragmentation (computing), Graph, Range (aeronautics), Distributed computing, Artificial intelligence, Machine learning, Chemistry, Database, Biochemistry, Materials science, Composite material, Gene, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 4, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367190754 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2304.13542 |
| ids.doi | https://doi.org/10.48550/arxiv.2304.13542 |
| ids.openalex | https://openalex.org/W4367190754 |
| fwci | |
| type | preprint |
| title | Long-Short-Range Message-Passing: A Physics-Informed Framework to Capture Non-Local Interaction for Scalable Molecular Dynamics Simulation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10044 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9797999858856201 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Protein Structure and Dynamics |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9772999882698059 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C48044578 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7296520471572876 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[0].display_name | Scalability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7232851982116699 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C63479239 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6325466632843018 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[2].display_name | Robustness (evolution) |
| concepts[3].id | https://openalex.org/C854659 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5383405089378357 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1859284 |
| concepts[3].display_name | Message passing |
| concepts[4].id | https://openalex.org/C80444323 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5310785174369812 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[4].display_name | Theoretical computer science |
| concepts[5].id | https://openalex.org/C191015642 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5124221444129944 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1132459 |
| concepts[5].display_name | Fragmentation (computing) |
| concepts[6].id | https://openalex.org/C132525143 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4368557035923004 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[6].display_name | Graph |
| concepts[7].id | https://openalex.org/C204323151 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42441269755363464 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[7].display_name | Range (aeronautics) |
| concepts[8].id | https://openalex.org/C120314980 |
| concepts[8].level | 1 |
| concepts[8].score | 0.38080012798309326 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[8].display_name | Distributed computing |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3375207781791687 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3347102999687195 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08671194314956665 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C55493867 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[13].display_name | Biochemistry |
| concepts[14].id | https://openalex.org/C192562407 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[14].display_name | Materials science |
| concepts[15].id | https://openalex.org/C159985019 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[15].display_name | Composite material |
| concepts[16].id | https://openalex.org/C104317684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[16].display_name | Gene |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/scalability |
| keywords[0].score | 0.7296520471572876 |
| keywords[0].display_name | Scalability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7232851982116699 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/robustness |
| keywords[2].score | 0.6325466632843018 |
| keywords[2].display_name | Robustness (evolution) |
| keywords[3].id | https://openalex.org/keywords/message-passing |
| keywords[3].score | 0.5383405089378357 |
| keywords[3].display_name | Message passing |
| keywords[4].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[4].score | 0.5310785174369812 |
| keywords[4].display_name | Theoretical computer science |
| keywords[5].id | https://openalex.org/keywords/fragmentation |
| keywords[5].score | 0.5124221444129944 |
| keywords[5].display_name | Fragmentation (computing) |
| keywords[6].id | https://openalex.org/keywords/graph |
| keywords[6].score | 0.4368557035923004 |
| keywords[6].display_name | Graph |
| keywords[7].id | https://openalex.org/keywords/range |
| keywords[7].score | 0.42441269755363464 |
| keywords[7].display_name | Range (aeronautics) |
| keywords[8].id | https://openalex.org/keywords/distributed-computing |
| keywords[8].score | 0.38080012798309326 |
| keywords[8].display_name | Distributed computing |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3375207781791687 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3347102999687195 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/chemistry |
| keywords[11].score | 0.08671194314956665 |
| keywords[11].display_name | Chemistry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2304.13542 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2304.13542 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2304.13542 |
| locations[1].id | doi:10.48550/arxiv.2304.13542 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2304.13542 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103964257 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4847-4761 |
| authorships[0].author.display_name | Yunyang Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Yunyang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100706501 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-6668-3230 |
| authorships[1].author.display_name | Yusong Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Yusong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5071500116 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2678-2085 |
| authorships[2].author.display_name | Lin Huang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huang, Lin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100462712 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4531-093X |
| authorships[3].author.display_name | Han Yang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang, Han |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101715414 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Xinran Wei |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wei, Xinran |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100360711 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4433-1701 |
| authorships[5].author.display_name | Jia Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Jia |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100451025 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2289-2452 |
| authorships[6].author.display_name | Tong Wang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wang, Tong |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101452806 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8763-8327 |
| authorships[7].author.display_name | Zun Wang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Wang, Zun |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5012636307 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9953-7275 |
| authorships[8].author.display_name | Bin Shao |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Shao, Bin |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5101884287 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-0476-8020 |
| authorships[9].author.display_name | Tie‐Yan Liu |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Liu, Tie-Yan |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2304.13542 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Long-Short-Range Message-Passing: A Physics-Informed Framework to Capture Non-Local Interaction for Scalable Molecular Dynamics Simulation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2978729728, https://openalex.org/W2389214306, https://openalex.org/W1997209091, https://openalex.org/W4235240664, https://openalex.org/W2965083567, https://openalex.org/W2003827594, https://openalex.org/W1838576100, https://openalex.org/W2095886385, https://openalex.org/W1989087147, https://openalex.org/W2551042189 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2304.13542 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2304.13542 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2304.13542 |
| primary_location.id | pmh:oai:arXiv.org:2304.13542 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2304.13542 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2304.13542 |
| publication_date | 2023-04-26 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 38, 59 |
| abstract_inverted_index.We | 79 |
| abstract_inverted_index.ab | 8 |
| abstract_inverted_index.as | 58 |
| abstract_inverted_index.at | 139 |
| abstract_inverted_index.be | 114, 137 |
| abstract_inverted_index.by | 48 |
| abstract_inverted_index.in | 102 |
| abstract_inverted_index.of | 2, 41, 61, 123 |
| abstract_inverted_index.to | 21, 36, 72, 84, 96, 109, 116 |
| abstract_inverted_index.up | 95 |
| abstract_inverted_index.we | 51 |
| abstract_inverted_index.40% | 97 |
| abstract_inverted_index.MAE | 98 |
| abstract_inverted_index.The | 127 |
| abstract_inverted_index.and | 4, 28, 43, 77, 89, 104, 121, 132 |
| abstract_inverted_index.for | 100, 129 |
| abstract_inverted_index.has | 12 |
| abstract_inverted_index.our | 124, 130 |
| abstract_inverted_index.the | 23, 32, 53, 62, 70, 81, 85, 91, 118 |
| abstract_inverted_index.two | 33 |
| abstract_inverted_index.MD22 | 103 |
| abstract_inverted_index.also | 113 |
| abstract_inverted_index.been | 13 |
| abstract_inverted_index.code | 128 |
| abstract_inverted_index.fail | 35 |
| abstract_inverted_index.give | 37 |
| abstract_inverted_index.have | 19 |
| abstract_inverted_index.over | 16 |
| abstract_inverted_index.will | 112 |
| abstract_inverted_index.with | 25, 69, 94 |
| abstract_inverted_index.EGNNs | 111 |
| abstract_inverted_index.apply | 80 |
| abstract_inverted_index.could | 136 |
| abstract_inverted_index.found | 138 |
| abstract_inverted_index.graph | 65 |
| abstract_inverted_index.model | 134 |
| abstract_inverted_index.using | 7 |
| abstract_inverted_index.LSR-MP | 82, 125 |
| abstract_inverted_index.ViSNet | 88 |
| abstract_inverted_index.initio | 9 |
| abstract_inverted_index.intent | 71 |
| abstract_inverted_index.neural | 66 |
| abstract_inverted_index.(EGNNs) | 68 |
| abstract_inverted_index.address | 22 |
| abstract_inverted_index.general | 119 |
| abstract_inverted_index.machine | 26 |
| abstract_inverted_index.problem | 24 |
| abstract_inverted_index.propose | 52 |
| abstract_inverted_index.results | 93 |
| abstract_inverted_index.systems | 6 |
| abstract_inverted_index.trained | 133 |
| abstract_inverted_index.various | 110 |
| abstract_inverted_index.weights | 135 |
| abstract_inverted_index.(LSR-MP) | 56 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.Inspired | 47 |
| abstract_inverted_index.chemical | 3 |
| abstract_inverted_index.decades. | 17 |
| abstract_inverted_index.dynamics | 11 |
| abstract_inverted_index.existing | 63 |
| abstract_inverted_index.learning | 27 |
| abstract_inverted_index.methods, | 50 |
| abstract_inverted_index.methods. | 30 |
| abstract_inverted_index.networks | 67 |
| abstract_inverted_index.proposed | 87 |
| abstract_inverted_index.recently | 86 |
| abstract_inverted_index.Chignolin | 105 |
| abstract_inverted_index.attempted | 20 |
| abstract_inverted_index.challenge | 15 |
| abstract_inverted_index.datasets. | 106 |
| abstract_inverted_index.discussed | 115 |
| abstract_inverted_index.framework | 57, 83 |
| abstract_inverted_index.many-body | 44 |
| abstract_inverted_index.molecular | 10 |
| abstract_inverted_index.molecules | 101 |
| abstract_inverted_index.reduction | 99 |
| abstract_inverted_index.Consistent | 107 |
| abstract_inverted_index.approaches | 34 |
| abstract_inverted_index.biological | 5 |
| abstract_inverted_index.framework. | 126 |
| abstract_inverted_index.illustrate | 117 |
| abstract_inverted_index.long-range | 42, 74 |
| abstract_inverted_index.robustness | 122 |
| abstract_inverted_index.simulation | 1 |
| abstract_inverted_index.Researchers | 18 |
| abstract_inverted_index.demonstrate | 90 |
| abstract_inverted_index.description | 40 |
| abstract_inverted_index.efficiently | 76 |
| abstract_inverted_index.equivariant | 64 |
| abstract_inverted_index.experiments | 131 |
| abstract_inverted_index.incorporate | 73 |
| abstract_inverted_index.effectively. | 78 |
| abstract_inverted_index.improvements | 108 |
| abstract_inverted_index.interactions | 75 |
| abstract_inverted_index.satisfactory | 39 |
| abstract_inverted_index.Computational | 0 |
| abstract_inverted_index.applicability | 120 |
| abstract_inverted_index.interactions, | 45 |
| abstract_inverted_index.respectively. | 46 |
| abstract_inverted_index.generalization | 60 |
| abstract_inverted_index.Message-Passing | 55 |
| abstract_inverted_index.Long-Short-Range | 54 |
| abstract_inverted_index.state-of-the-art | 92 |
| abstract_inverted_index.fragmentation-based | 29, 49 |
| abstract_inverted_index.https://github.com/liyy2/LSR-MP. | 140 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |