Long-Tailed 3D Detection via Multi-Modal Fusion Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.10986
Contemporary autonomous vehicle (AV) benchmarks have advanced techniques for training 3D detectors. While class labels naturally follow a long-tailed distribution in the real world, existing benchmarks only focus on a few common classes (e.g., pedestrian and car) and neglect many rare but crucial classes (e.g., emergency vehicle and stroller). However, AVs must reliably detect both common and rare classes for safe operation in the open world. We address this challenge by formally studying the problem of Long-Tailed 3D Detection (LT3D), which evaluates all annotated classes, including those in-the-tail. We address LT3D with hierarchical losses that promote feature sharing across classes, and introduce diagnostic metrics that award partial credit to "reasonable" mistakes with respect to the semantic hierarchy. Further, we point out that rare-class accuracy is particularly improved via multi-modal late fusion (MMLF) of independently trained uni-modal LiDAR and RGB detectors. Such an MMLF framework allows us to leverage large-scale uni-modal datasets (with more examples for rare classes) to train better uni-modal detectors. Finally, we examine three critical components of our simple MMLF approach from first principles: whether to train 2D or 3D RGB detectors for fusion, whether to match RGB and LiDAR detections in 3D or the projected 2D image plane, and how to fuse matched detections. Extensive experiments reveal that 2D RGB detectors achieve better recognition accuracy for rare classes than 3D RGB detectors, matching on the 2D image plane mitigates depth estimation errors for better matching, and score calibration and probabilistic fusion notably improves the final performance further. Our MMLF significantly outperforms prior work for LT3D, particularly improving on the six rarest classes from 12.8 to 20.0 mAP! Our code and models are available on our project page.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.10986
- https://arxiv.org/pdf/2312.10986
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389984048
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389984048Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.10986Digital Object Identifier
- Title
-
Long-Tailed 3D Detection via Multi-Modal FusionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-18Full publication date if available
- Authors
-
Yechi Ma, Neehar Peri, Shuoquan Wei, Wei Hua, Deva Ramanan, Yanan Li, Shu KongList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.10986Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.10986Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.10986Direct OA link when available
- Concepts
-
Lidar, Artificial intelligence, RGB color model, Computer vision, Computer science, Leverage (statistics), Detector, Benchmark (surveying), Segmentation, Fusion, Object detection, Pattern recognition (psychology), Remote sensing, Geography, Cartography, Linguistics, Telecommunications, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389984048 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.10986 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.10986 |
| ids.openalex | https://openalex.org/W4389984048 |
| fwci | |
| type | preprint |
| title | Long-Tailed 3D Detection via Multi-Modal Fusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9890999794006348 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9887999892234802 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51399673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7855793833732605 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[0].display_name | Lidar |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7569808959960938 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C82990744 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7227646112442017 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[2].display_name | RGB color model |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6821642518043518 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6775702834129333 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C153083717 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6521358489990234 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[5].display_name | Leverage (statistics) |
| concepts[6].id | https://openalex.org/C94915269 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5622776746749878 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[6].display_name | Detector |
| concepts[7].id | https://openalex.org/C185798385 |
| concepts[7].level | 2 |
| concepts[7].score | 0.547041118144989 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[7].display_name | Benchmark (surveying) |
| concepts[8].id | https://openalex.org/C89600930 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48519089818000793 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[8].display_name | Segmentation |
| concepts[9].id | https://openalex.org/C158525013 |
| concepts[9].level | 2 |
| concepts[9].score | 0.442484050989151 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[9].display_name | Fusion |
| concepts[10].id | https://openalex.org/C2776151529 |
| concepts[10].level | 3 |
| concepts[10].score | 0.43114349246025085 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[10].display_name | Object detection |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3464253544807434 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C62649853 |
| concepts[12].level | 1 |
| concepts[12].score | 0.18017345666885376 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[12].display_name | Remote sensing |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.16903555393218994 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C58640448 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0819234549999237 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[14].display_name | Cartography |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/lidar |
| keywords[0].score | 0.7855793833732605 |
| keywords[0].display_name | Lidar |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7569808959960938 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/rgb-color-model |
| keywords[2].score | 0.7227646112442017 |
| keywords[2].display_name | RGB color model |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.6821642518043518 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6775702834129333 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/leverage |
| keywords[5].score | 0.6521358489990234 |
| keywords[5].display_name | Leverage (statistics) |
| keywords[6].id | https://openalex.org/keywords/detector |
| keywords[6].score | 0.5622776746749878 |
| keywords[6].display_name | Detector |
| keywords[7].id | https://openalex.org/keywords/benchmark |
| keywords[7].score | 0.547041118144989 |
| keywords[7].display_name | Benchmark (surveying) |
| keywords[8].id | https://openalex.org/keywords/segmentation |
| keywords[8].score | 0.48519089818000793 |
| keywords[8].display_name | Segmentation |
| keywords[9].id | https://openalex.org/keywords/fusion |
| keywords[9].score | 0.442484050989151 |
| keywords[9].display_name | Fusion |
| keywords[10].id | https://openalex.org/keywords/object-detection |
| keywords[10].score | 0.43114349246025085 |
| keywords[10].display_name | Object detection |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3464253544807434 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/remote-sensing |
| keywords[12].score | 0.18017345666885376 |
| keywords[12].display_name | Remote sensing |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.16903555393218994 |
| keywords[13].display_name | Geography |
| keywords[14].id | https://openalex.org/keywords/cartography |
| keywords[14].score | 0.0819234549999237 |
| keywords[14].display_name | Cartography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.10986 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.10986 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.10986 |
| locations[1].id | doi:10.48550/arxiv.2312.10986 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.10986 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101327275 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yechi Ma |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ma, Yechi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006107116 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9329-3989 |
| authorships[1].author.display_name | Neehar Peri |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peri, Neehar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5050893277 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shuoquan Wei |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wei, Shuoquan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100403937 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2047-9712 |
| authorships[3].author.display_name | Wei Hua |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hua, Wei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5004353237 |
| authorships[4].author.orcid | https://orcid.org/0009-0008-9180-8983 |
| authorships[4].author.display_name | Deva Ramanan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ramanan, Deva |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5115602128 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1971-1729 |
| authorships[5].author.display_name | Yanan Li |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Li, Yanan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5066406697 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1362-5937 |
| authorships[6].author.display_name | Shu Kong |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Kong, Shu |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.10986 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-12-20T00:00:00 |
| display_name | Long-Tailed 3D Detection via Multi-Modal Fusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4319317934, https://openalex.org/W2901265155, https://openalex.org/W2956374172, https://openalex.org/W4281783339, https://openalex.org/W4319837668, https://openalex.org/W4308071650, https://openalex.org/W3188333020, https://openalex.org/W1964041166, https://openalex.org/W4390887692, https://openalex.org/W4210818033 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.10986 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.10986 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.10986 |
| primary_location.id | pmh:oai:arXiv.org:2312.10986 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.10986 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.10986 |
| publication_date | 2023-12-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17, 29 |
| abstract_inverted_index.2D | 179, 198, 211, 228 |
| abstract_inverted_index.3D | 10, 77, 181, 194, 222 |
| abstract_inverted_index.We | 66, 88 |
| abstract_inverted_index.an | 141 |
| abstract_inverted_index.by | 70 |
| abstract_inverted_index.in | 20, 62, 193 |
| abstract_inverted_index.is | 124 |
| abstract_inverted_index.of | 75, 132, 168 |
| abstract_inverted_index.on | 28, 226, 260, 276 |
| abstract_inverted_index.or | 180, 195 |
| abstract_inverted_index.to | 108, 113, 146, 157, 177, 187, 203, 267 |
| abstract_inverted_index.us | 145 |
| abstract_inverted_index.we | 118, 163 |
| abstract_inverted_index.AVs | 50 |
| abstract_inverted_index.Our | 250, 270 |
| abstract_inverted_index.RGB | 138, 182, 189, 212, 223 |
| abstract_inverted_index.all | 82 |
| abstract_inverted_index.and | 35, 37, 47, 56, 100, 137, 190, 201, 238, 241, 272 |
| abstract_inverted_index.are | 274 |
| abstract_inverted_index.but | 41 |
| abstract_inverted_index.few | 30 |
| abstract_inverted_index.for | 8, 59, 154, 184, 218, 235, 256 |
| abstract_inverted_index.how | 202 |
| abstract_inverted_index.our | 169, 277 |
| abstract_inverted_index.out | 120 |
| abstract_inverted_index.six | 262 |
| abstract_inverted_index.the | 21, 63, 73, 114, 196, 227, 246, 261 |
| abstract_inverted_index.via | 127 |
| abstract_inverted_index.(AV) | 3 |
| abstract_inverted_index.12.8 | 266 |
| abstract_inverted_index.20.0 | 268 |
| abstract_inverted_index.LT3D | 90 |
| abstract_inverted_index.MMLF | 142, 171, 251 |
| abstract_inverted_index.Such | 140 |
| abstract_inverted_index.both | 54 |
| abstract_inverted_index.car) | 36 |
| abstract_inverted_index.code | 271 |
| abstract_inverted_index.from | 173, 265 |
| abstract_inverted_index.fuse | 204 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.late | 129 |
| abstract_inverted_index.mAP! | 269 |
| abstract_inverted_index.many | 39 |
| abstract_inverted_index.more | 152 |
| abstract_inverted_index.must | 51 |
| abstract_inverted_index.only | 26 |
| abstract_inverted_index.open | 64 |
| abstract_inverted_index.rare | 40, 57, 155, 219 |
| abstract_inverted_index.real | 22 |
| abstract_inverted_index.safe | 60 |
| abstract_inverted_index.than | 221 |
| abstract_inverted_index.that | 94, 104, 121, 210 |
| abstract_inverted_index.this | 68 |
| abstract_inverted_index.with | 91, 111 |
| abstract_inverted_index.work | 255 |
| abstract_inverted_index.(with | 151 |
| abstract_inverted_index.LT3D, | 257 |
| abstract_inverted_index.LiDAR | 136, 191 |
| abstract_inverted_index.While | 12 |
| abstract_inverted_index.award | 105 |
| abstract_inverted_index.class | 13 |
| abstract_inverted_index.depth | 232 |
| abstract_inverted_index.final | 247 |
| abstract_inverted_index.first | 174 |
| abstract_inverted_index.focus | 27 |
| abstract_inverted_index.image | 199, 229 |
| abstract_inverted_index.match | 188 |
| abstract_inverted_index.page. | 279 |
| abstract_inverted_index.plane | 230 |
| abstract_inverted_index.point | 119 |
| abstract_inverted_index.prior | 254 |
| abstract_inverted_index.score | 239 |
| abstract_inverted_index.those | 86 |
| abstract_inverted_index.three | 165 |
| abstract_inverted_index.train | 158, 178 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.(MMLF) | 131 |
| abstract_inverted_index.(e.g., | 33, 44 |
| abstract_inverted_index.across | 98 |
| abstract_inverted_index.allows | 144 |
| abstract_inverted_index.better | 159, 215, 236 |
| abstract_inverted_index.common | 31, 55 |
| abstract_inverted_index.credit | 107 |
| abstract_inverted_index.detect | 53 |
| abstract_inverted_index.errors | 234 |
| abstract_inverted_index.follow | 16 |
| abstract_inverted_index.fusion | 130, 243 |
| abstract_inverted_index.labels | 14 |
| abstract_inverted_index.losses | 93 |
| abstract_inverted_index.models | 273 |
| abstract_inverted_index.plane, | 200 |
| abstract_inverted_index.rarest | 263 |
| abstract_inverted_index.reveal | 209 |
| abstract_inverted_index.simple | 170 |
| abstract_inverted_index.world, | 23 |
| abstract_inverted_index.world. | 65 |
| abstract_inverted_index.(LT3D), | 79 |
| abstract_inverted_index.achieve | 214 |
| abstract_inverted_index.address | 67, 89 |
| abstract_inverted_index.classes | 32, 43, 58, 220, 264 |
| abstract_inverted_index.crucial | 42 |
| abstract_inverted_index.examine | 164 |
| abstract_inverted_index.feature | 96 |
| abstract_inverted_index.fusion, | 185 |
| abstract_inverted_index.matched | 205 |
| abstract_inverted_index.metrics | 103 |
| abstract_inverted_index.neglect | 38 |
| abstract_inverted_index.notably | 244 |
| abstract_inverted_index.partial | 106 |
| abstract_inverted_index.problem | 74 |
| abstract_inverted_index.project | 278 |
| abstract_inverted_index.promote | 95 |
| abstract_inverted_index.respect | 112 |
| abstract_inverted_index.sharing | 97 |
| abstract_inverted_index.trained | 134 |
| abstract_inverted_index.vehicle | 2, 46 |
| abstract_inverted_index.whether | 176, 186 |
| abstract_inverted_index.Finally, | 162 |
| abstract_inverted_index.Further, | 117 |
| abstract_inverted_index.However, | 49 |
| abstract_inverted_index.accuracy | 123, 217 |
| abstract_inverted_index.advanced | 6 |
| abstract_inverted_index.approach | 172 |
| abstract_inverted_index.classes) | 156 |
| abstract_inverted_index.classes, | 84, 99 |
| abstract_inverted_index.critical | 166 |
| abstract_inverted_index.datasets | 150 |
| abstract_inverted_index.examples | 153 |
| abstract_inverted_index.existing | 24 |
| abstract_inverted_index.formally | 71 |
| abstract_inverted_index.further. | 249 |
| abstract_inverted_index.improved | 126 |
| abstract_inverted_index.improves | 245 |
| abstract_inverted_index.leverage | 147 |
| abstract_inverted_index.matching | 225 |
| abstract_inverted_index.mistakes | 110 |
| abstract_inverted_index.reliably | 52 |
| abstract_inverted_index.semantic | 115 |
| abstract_inverted_index.studying | 72 |
| abstract_inverted_index.training | 9 |
| abstract_inverted_index.Detection | 78 |
| abstract_inverted_index.Extensive | 207 |
| abstract_inverted_index.annotated | 83 |
| abstract_inverted_index.available | 275 |
| abstract_inverted_index.challenge | 69 |
| abstract_inverted_index.detectors | 183, 213 |
| abstract_inverted_index.emergency | 45 |
| abstract_inverted_index.evaluates | 81 |
| abstract_inverted_index.framework | 143 |
| abstract_inverted_index.improving | 259 |
| abstract_inverted_index.including | 85 |
| abstract_inverted_index.introduce | 101 |
| abstract_inverted_index.matching, | 237 |
| abstract_inverted_index.mitigates | 231 |
| abstract_inverted_index.naturally | 15 |
| abstract_inverted_index.operation | 61 |
| abstract_inverted_index.projected | 197 |
| abstract_inverted_index.uni-modal | 135, 149, 160 |
| abstract_inverted_index.autonomous | 1 |
| abstract_inverted_index.benchmarks | 4, 25 |
| abstract_inverted_index.components | 167 |
| abstract_inverted_index.detections | 192 |
| abstract_inverted_index.detectors, | 224 |
| abstract_inverted_index.detectors. | 11, 139, 161 |
| abstract_inverted_index.diagnostic | 102 |
| abstract_inverted_index.estimation | 233 |
| abstract_inverted_index.hierarchy. | 116 |
| abstract_inverted_index.pedestrian | 34 |
| abstract_inverted_index.rare-class | 122 |
| abstract_inverted_index.stroller). | 48 |
| abstract_inverted_index.techniques | 7 |
| abstract_inverted_index.Long-Tailed | 76 |
| abstract_inverted_index.calibration | 240 |
| abstract_inverted_index.detections. | 206 |
| abstract_inverted_index.experiments | 208 |
| abstract_inverted_index.large-scale | 148 |
| abstract_inverted_index.long-tailed | 18 |
| abstract_inverted_index.multi-modal | 128 |
| abstract_inverted_index.outperforms | 253 |
| abstract_inverted_index.performance | 248 |
| abstract_inverted_index.principles: | 175 |
| abstract_inverted_index.recognition | 216 |
| abstract_inverted_index."reasonable" | 109 |
| abstract_inverted_index.Contemporary | 0 |
| abstract_inverted_index.distribution | 19 |
| abstract_inverted_index.hierarchical | 92 |
| abstract_inverted_index.in-the-tail. | 87 |
| abstract_inverted_index.particularly | 125, 258 |
| abstract_inverted_index.independently | 133 |
| abstract_inverted_index.probabilistic | 242 |
| abstract_inverted_index.significantly | 252 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |