Long-Term Forecast of Watershed Runoff Based on GWO-BP and Multi-Scale Forecasting Factor Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/app15179637
To address limitations such as short forecast periods, data collection challenges, insufficient understanding of physical mechanisms, and single-scale constraints, forecasting factors and their characteristics were analyzed across astronomical, global, and watershed scales. Forecasting factors were selected based on astronomical observations, ocean current predictions, traditional calendars, and agricultural proverbs, and their characteristics were quantitatively processed. A BP neural network optimized by the Gray Wolf Optimizer (GWO) algorithm (GWO-BP) was constructed, and the dataset derived from sample division of the Fengman Reservoir Basin was used to train the model for secondary fitting. The model successfully fit and predicted the annual inflow of the Fengman Reservoir Basin from 2013 to 2017. Through a comparison with the GWO–Support Vector Machine (GWO-SVM) model, results showed that the GWO-BP model exhibited superior predictive performance. This method integrates multi-scale, easily accessible, and quantifiable forecasting factors, facilitating the extension of long-term runoff forecasting applications within the river basin.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app15179637
- https://www.mdpi.com/2076-3417/15/17/9637/pdf?version=1756790613
- OA Status
- gold
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413940993
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413940993Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app15179637Digital Object Identifier
- Title
-
Long-Term Forecast of Watershed Runoff Based on GWO-BP and Multi-Scale Forecasting Factor AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-01Full publication date if available
- Authors
-
Hairong Zhang, Guanjun Lei, Wenchuan Wang, Biqiong WuList of authors in order
- Landing page
-
https://doi.org/10.3390/app15179637Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/15/17/9637/pdf?version=1756790613Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/15/17/9637/pdf?version=1756790613Direct OA link when available
- Concepts
-
Term (time), Environmental science, Scale (ratio), Surface runoff, Meteorology, Geography, Cartography, Ecology, Biology, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413940993 |
|---|---|
| doi | https://doi.org/10.3390/app15179637 |
| ids.doi | https://doi.org/10.3390/app15179637 |
| ids.openalex | https://openalex.org/W4413940993 |
| fwci | 0.0 |
| type | article |
| title | Long-Term Forecast of Watershed Runoff Based on GWO-BP and Multi-Scale Forecasting Factor Analysis |
| biblio.issue | 17 |
| biblio.volume | 15 |
| biblio.last_page | 9637 |
| biblio.first_page | 9637 |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9966999888420105 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| topics[1].id | https://openalex.org/T10330 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9710000157356262 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Hydrology and Watershed Management Studies |
| topics[2].id | https://openalex.org/T14157 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9656000137329102 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Environmental and Agricultural Sciences |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C61797465 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5170146226882935 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[0].display_name | Term (time) |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5131683945655823 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C2778755073 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4944779872894287 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[2].display_name | Scale (ratio) |
| concepts[3].id | https://openalex.org/C50477045 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4171585738658905 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1444790 |
| concepts[3].display_name | Surface runoff |
| concepts[4].id | https://openalex.org/C153294291 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36414313316345215 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[4].display_name | Meteorology |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.22792598605155945 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C58640448 |
| concepts[6].level | 1 |
| concepts[6].score | 0.11563572287559509 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[6].display_name | Cartography |
| concepts[7].id | https://openalex.org/C18903297 |
| concepts[7].level | 1 |
| concepts[7].score | 0.04972180724143982 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[7].display_name | Ecology |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/term |
| keywords[0].score | 0.5170146226882935 |
| keywords[0].display_name | Term (time) |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.5131683945655823 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/scale |
| keywords[2].score | 0.4944779872894287 |
| keywords[2].display_name | Scale (ratio) |
| keywords[3].id | https://openalex.org/keywords/surface-runoff |
| keywords[3].score | 0.4171585738658905 |
| keywords[3].display_name | Surface runoff |
| keywords[4].id | https://openalex.org/keywords/meteorology |
| keywords[4].score | 0.36414313316345215 |
| keywords[4].display_name | Meteorology |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.22792598605155945 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/cartography |
| keywords[6].score | 0.11563572287559509 |
| keywords[6].display_name | Cartography |
| keywords[7].id | https://openalex.org/keywords/ecology |
| keywords[7].score | 0.04972180724143982 |
| keywords[7].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.3390/app15179637 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/15/17/9637/pdf?version=1756790613 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app15179637 |
| locations[1].id | pmh:oai:doaj.org/article:dd15bd0485754a0f880093b661aba015 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 15, Iss 17, p 9637 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/dd15bd0485754a0f880093b661aba015 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101978996 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4791-2838 |
| authorships[0].author.display_name | Hairong Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210135979 |
| authorships[0].affiliations[0].raw_affiliation_string | Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, China Yangtze Power Co., Ltd., Yichang 443000, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210135979 |
| authorships[0].institutions[0].ror | https://ror.org/03n5f7689 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210135979 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Yangtze River Pharmaceutical Group (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hairong Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, China Yangtze Power Co., Ltd., Yichang 443000, China |
| authorships[1].author.id | https://openalex.org/A5025904476 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Guanjun Lei |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I198645480 |
| authorships[1].affiliations[0].raw_affiliation_string | Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China |
| authorships[1].institutions[0].id | https://openalex.org/I198645480 |
| authorships[1].institutions[0].ror | https://ror.org/03acrzv41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I198645480 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | North China University of Water Resources and Electric Power |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guanjun Lei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China |
| authorships[2].author.id | https://openalex.org/A5074094490 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1367-5886 |
| authorships[2].author.display_name | Wenchuan Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I198645480 |
| authorships[2].affiliations[0].raw_affiliation_string | Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China |
| authorships[2].institutions[0].id | https://openalex.org/I198645480 |
| authorships[2].institutions[0].ror | https://ror.org/03acrzv41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I198645480 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | North China University of Water Resources and Electric Power |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenchuan Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China |
| authorships[3].author.id | https://openalex.org/A5101349582 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Biqiong Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210135979 |
| authorships[3].affiliations[0].raw_affiliation_string | Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, China Yangtze Power Co., Ltd., Yichang 443000, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210135979 |
| authorships[3].institutions[0].ror | https://ror.org/03n5f7689 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210135979 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Yangtze River Pharmaceutical Group (China) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Biqiong Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, China Yangtze Power Co., Ltd., Yichang 443000, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/15/17/9637/pdf?version=1756790613 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Long-Term Forecast of Watershed Runoff Based on GWO-BP and Multi-Scale Forecasting Factor Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9966999888420105 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2792447872, https://openalex.org/W2054461511, https://openalex.org/W3110408977, https://openalex.org/W2371790036, https://openalex.org/W3150758196, https://openalex.org/W2377305886, https://openalex.org/W2416413398, https://openalex.org/W2258050176 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app15179637 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/15/17/9637/pdf?version=1756790613 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app15179637 |
| primary_location.id | doi:10.3390/app15179637 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/15/17/9637/pdf?version=1756790613 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app15179637 |
| publication_date | 2025-09-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4396677571, https://openalex.org/W4399781215, https://openalex.org/W3147438985, https://openalex.org/W2964253828, https://openalex.org/W4399692520, https://openalex.org/W4394784746, https://openalex.org/W4399357964, https://openalex.org/W2094312930, https://openalex.org/W2009203913, https://openalex.org/W2150355110, https://openalex.org/W2766736793, https://openalex.org/W1498436455, https://openalex.org/W2375733679, https://openalex.org/W2374121423, https://openalex.org/W2374880452, https://openalex.org/W2365052262 |
| referenced_works_count | 16 |
| abstract_inverted_index.A | 54 |
| abstract_inverted_index.a | 109 |
| abstract_inverted_index.BP | 55 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.as | 4 |
| abstract_inverted_index.by | 59 |
| abstract_inverted_index.of | 13, 76, 99, 141 |
| abstract_inverted_index.on | 37 |
| abstract_inverted_index.to | 83, 106 |
| abstract_inverted_index.The | 90 |
| abstract_inverted_index.and | 16, 21, 29, 45, 48, 69, 94, 134 |
| abstract_inverted_index.fit | 93 |
| abstract_inverted_index.for | 87 |
| abstract_inverted_index.the | 60, 70, 77, 85, 96, 100, 112, 121, 139, 147 |
| abstract_inverted_index.was | 67, 81 |
| abstract_inverted_index.2013 | 105 |
| abstract_inverted_index.Gray | 61 |
| abstract_inverted_index.This | 128 |
| abstract_inverted_index.Wolf | 62 |
| abstract_inverted_index.data | 8 |
| abstract_inverted_index.from | 73, 104 |
| abstract_inverted_index.such | 3 |
| abstract_inverted_index.that | 120 |
| abstract_inverted_index.used | 82 |
| abstract_inverted_index.were | 24, 34, 51 |
| abstract_inverted_index.with | 111 |
| abstract_inverted_index.(GWO) | 64 |
| abstract_inverted_index.2017. | 107 |
| abstract_inverted_index.Basin | 80, 103 |
| abstract_inverted_index.based | 36 |
| abstract_inverted_index.model | 86, 91, 123 |
| abstract_inverted_index.ocean | 40 |
| abstract_inverted_index.river | 148 |
| abstract_inverted_index.short | 5 |
| abstract_inverted_index.their | 22, 49 |
| abstract_inverted_index.train | 84 |
| abstract_inverted_index.GWO-BP | 122 |
| abstract_inverted_index.Vector | 114 |
| abstract_inverted_index.across | 26 |
| abstract_inverted_index.annual | 97 |
| abstract_inverted_index.basin. | 149 |
| abstract_inverted_index.easily | 132 |
| abstract_inverted_index.inflow | 98 |
| abstract_inverted_index.method | 129 |
| abstract_inverted_index.model, | 117 |
| abstract_inverted_index.neural | 56 |
| abstract_inverted_index.runoff | 143 |
| abstract_inverted_index.sample | 74 |
| abstract_inverted_index.showed | 119 |
| abstract_inverted_index.within | 146 |
| abstract_inverted_index.Fengman | 78, 101 |
| abstract_inverted_index.Machine | 115 |
| abstract_inverted_index.Through | 108 |
| abstract_inverted_index.address | 1 |
| abstract_inverted_index.current | 41 |
| abstract_inverted_index.dataset | 71 |
| abstract_inverted_index.derived | 72 |
| abstract_inverted_index.factors | 20, 33 |
| abstract_inverted_index.global, | 28 |
| abstract_inverted_index.network | 57 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.scales. | 31 |
| abstract_inverted_index.(GWO-BP) | 66 |
| abstract_inverted_index.analyzed | 25 |
| abstract_inverted_index.division | 75 |
| abstract_inverted_index.factors, | 137 |
| abstract_inverted_index.fitting. | 89 |
| abstract_inverted_index.forecast | 6 |
| abstract_inverted_index.periods, | 7 |
| abstract_inverted_index.physical | 14 |
| abstract_inverted_index.selected | 35 |
| abstract_inverted_index.superior | 125 |
| abstract_inverted_index.(GWO-SVM) | 116 |
| abstract_inverted_index.Optimizer | 63 |
| abstract_inverted_index.Reservoir | 79, 102 |
| abstract_inverted_index.algorithm | 65 |
| abstract_inverted_index.exhibited | 124 |
| abstract_inverted_index.extension | 140 |
| abstract_inverted_index.long-term | 142 |
| abstract_inverted_index.optimized | 58 |
| abstract_inverted_index.predicted | 95 |
| abstract_inverted_index.proverbs, | 47 |
| abstract_inverted_index.secondary | 88 |
| abstract_inverted_index.watershed | 30 |
| abstract_inverted_index.calendars, | 44 |
| abstract_inverted_index.collection | 9 |
| abstract_inverted_index.comparison | 110 |
| abstract_inverted_index.integrates | 130 |
| abstract_inverted_index.predictive | 126 |
| abstract_inverted_index.processed. | 53 |
| abstract_inverted_index.Forecasting | 32 |
| abstract_inverted_index.accessible, | 133 |
| abstract_inverted_index.challenges, | 10 |
| abstract_inverted_index.forecasting | 19, 136, 144 |
| abstract_inverted_index.limitations | 2 |
| abstract_inverted_index.mechanisms, | 15 |
| abstract_inverted_index.traditional | 43 |
| abstract_inverted_index.agricultural | 46 |
| abstract_inverted_index.applications | 145 |
| abstract_inverted_index.astronomical | 38 |
| abstract_inverted_index.constraints, | 18 |
| abstract_inverted_index.constructed, | 68 |
| abstract_inverted_index.facilitating | 138 |
| abstract_inverted_index.insufficient | 11 |
| abstract_inverted_index.multi-scale, | 131 |
| abstract_inverted_index.performance. | 127 |
| abstract_inverted_index.predictions, | 42 |
| abstract_inverted_index.quantifiable | 135 |
| abstract_inverted_index.single-scale | 17 |
| abstract_inverted_index.successfully | 92 |
| abstract_inverted_index.GWO–Support | 113 |
| abstract_inverted_index.astronomical, | 27 |
| abstract_inverted_index.observations, | 39 |
| abstract_inverted_index.understanding | 12 |
| abstract_inverted_index.quantitatively | 52 |
| abstract_inverted_index.characteristics | 23, 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.41290632 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |