Long-Text Summarisation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17822780
This study enhances text summarization techniques using advanced transformer models to handle complex documents like those in the BIGPATENT dataset, which includes 1.3 million U.S. patent documents. We focused on integrating self-attention mechanisms and coreference resolution to improve summary quality. Four models—LED, DistilBART, BigBird-Pegasus, and LongT5—were fine-tuned and evaluated using ROUGE, BLEU, and METEOR metrics. The results showed significant performance gains, with LED achieving a ROUGE-1 score of 95.38% and DistilBART achieving 91.94% on BLEU, marking a 50% improvement over previous studies. These findings confirm the effectiveness of our methodologies and emphasize the importance of high computational resources. Future work could explore multi-lingual and multi-modal data and develop user-friendly interfaces to broaden the models’ applicability.
Related Topics
- Type
- dissertation
- Landing Page
- https://doi.org/10.5281/zenodo.17822780
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7110925557
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7110925557Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17822780Digital Object Identifier
- Title
-
Long-Text SummarisationWork title
- Type
-
dissertationOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-04Full publication date if available
- Authors
-
Pimbblet, Kevin, Moreland, Sam, OKPARA, GODSPOWERList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17822780Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17822780Direct OA link when available
- Concepts
-
Automatic summarization, Computer science, Coreference, Artificial intelligence, Natural language processing, Transformer, Information retrieval, Bridging (networking), Data science, Headline, Machine learning, Data mining, Data modeling, F1 scoreTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7110925557 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17822780 |
| ids.doi | https://doi.org/10.5281/zenodo.17822780 |
| ids.openalex | https://openalex.org/W7110925557 |
| fwci | |
| type | dissertation |
| title | Long-Text Summarisation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C170858558 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7650305032730103 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1394144 |
| concepts[0].display_name | Automatic summarization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7256041765213013 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C28076734 |
| concepts[2].level | 3 |
| concepts[2].score | 0.568396806716919 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q63087 |
| concepts[2].display_name | Coreference |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4553687274456024 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.43926435708999634 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C66322947 |
| concepts[5].level | 3 |
| concepts[5].score | 0.40928584337234497 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[5].display_name | Transformer |
| concepts[6].id | https://openalex.org/C23123220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40894773602485657 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[6].display_name | Information retrieval |
| concepts[7].id | https://openalex.org/C174348530 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3745358884334564 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q188635 |
| concepts[7].display_name | Bridging (networking) |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3137385845184326 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C2778689934 |
| concepts[9].level | 2 |
| concepts[9].score | 0.29502618312835693 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1313396 |
| concepts[9].display_name | Headline |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2768237590789795 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.26353415846824646 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C67186912 |
| concepts[12].level | 2 |
| concepts[12].score | 0.25221025943756104 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[12].display_name | Data modeling |
| concepts[13].id | https://openalex.org/C148524875 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2508561909198761 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q6975395 |
| concepts[13].display_name | F1 score |
| keywords[0].id | https://openalex.org/keywords/automatic-summarization |
| keywords[0].score | 0.7650305032730103 |
| keywords[0].display_name | Automatic summarization |
| keywords[1].id | https://openalex.org/keywords/coreference |
| keywords[1].score | 0.568396806716919 |
| keywords[1].display_name | Coreference |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.40928584337234497 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/bridging |
| keywords[3].score | 0.3745358884334564 |
| keywords[3].display_name | Bridging (networking) |
| keywords[4].id | https://openalex.org/keywords/headline |
| keywords[4].score | 0.29502618312835693 |
| keywords[4].display_name | Headline |
| language | |
| locations[0].id | doi:10.5281/zenodo.17822780 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | thesis |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17822780 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A4365899014 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pimbblet, Kevin |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I191240316 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Hull |
| authorships[0].institutions[0].id | https://openalex.org/I191240316 |
| authorships[0].institutions[0].ror | https://ror.org/04nkhwh30 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I191240316 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Hull |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pimbblet, Kevin |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | University of Hull |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Moreland, Sam |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I199932263 |
| authorships[1].affiliations[0].raw_affiliation_string | Naimuri |
| authorships[1].institutions[0].id | https://openalex.org/I199932263 |
| authorships[1].institutions[0].ror | https://ror.org/056v48353 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I199932263 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | Northern Alberta Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Moreland, Sam |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Naimuri |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | OKPARA, GODSPOWER |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I191240316 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Hull |
| authorships[2].institutions[0].id | https://openalex.org/I191240316 |
| authorships[2].institutions[0].ror | https://ror.org/04nkhwh30 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I191240316 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Hull |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | OKPARA, GODSPOWER |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Hull |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17822780 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | Long-Text Summarisation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:49:46.989445 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17822780 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | thesis |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17822780 |
| primary_location.id | doi:10.5281/zenodo.17822780 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | thesis |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17822780 |
| publication_date | 2025-12-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 64, 76 |
| abstract_inverted_index.We | 27 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.of | 67, 87, 94 |
| abstract_inverted_index.on | 29, 73 |
| abstract_inverted_index.to | 10, 36, 110 |
| abstract_inverted_index.1.3 | 22 |
| abstract_inverted_index.50% | 77 |
| abstract_inverted_index.LED | 62 |
| abstract_inverted_index.The | 55 |
| abstract_inverted_index.and | 33, 44, 47, 52, 69, 90, 103, 106 |
| abstract_inverted_index.our | 88 |
| abstract_inverted_index.the | 17, 85, 92, 112 |
| abstract_inverted_index.Four | 40 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.U.S. | 24 |
| abstract_inverted_index.data | 105 |
| abstract_inverted_index.high | 95 |
| abstract_inverted_index.like | 14 |
| abstract_inverted_index.over | 79 |
| abstract_inverted_index.text | 3 |
| abstract_inverted_index.with | 61 |
| abstract_inverted_index.work | 99 |
| abstract_inverted_index.BLEU, | 51, 74 |
| abstract_inverted_index.These | 82 |
| abstract_inverted_index.could | 100 |
| abstract_inverted_index.score | 66 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.those | 15 |
| abstract_inverted_index.using | 6, 49 |
| abstract_inverted_index.which | 20 |
| abstract_inverted_index.91.94% | 72 |
| abstract_inverted_index.95.38% | 68 |
| abstract_inverted_index.Future | 98 |
| abstract_inverted_index.METEOR | 53 |
| abstract_inverted_index.ROUGE, | 50 |
| abstract_inverted_index.gains, | 60 |
| abstract_inverted_index.handle | 11 |
| abstract_inverted_index.models | 9 |
| abstract_inverted_index.patent | 25 |
| abstract_inverted_index.showed | 57 |
| abstract_inverted_index.ROUGE-1 | 65 |
| abstract_inverted_index.broaden | 111 |
| abstract_inverted_index.complex | 12 |
| abstract_inverted_index.confirm | 84 |
| abstract_inverted_index.develop | 107 |
| abstract_inverted_index.explore | 101 |
| abstract_inverted_index.focused | 28 |
| abstract_inverted_index.improve | 37 |
| abstract_inverted_index.marking | 75 |
| abstract_inverted_index.million | 23 |
| abstract_inverted_index.results | 56 |
| abstract_inverted_index.summary | 38 |
| abstract_inverted_index.advanced | 7 |
| abstract_inverted_index.dataset, | 19 |
| abstract_inverted_index.enhances | 2 |
| abstract_inverted_index.findings | 83 |
| abstract_inverted_index.includes | 21 |
| abstract_inverted_index.metrics. | 54 |
| abstract_inverted_index.previous | 80 |
| abstract_inverted_index.quality. | 39 |
| abstract_inverted_index.studies. | 81 |
| abstract_inverted_index.BIGPATENT | 18 |
| abstract_inverted_index.achieving | 63, 71 |
| abstract_inverted_index.documents | 13 |
| abstract_inverted_index.emphasize | 91 |
| abstract_inverted_index.evaluated | 48 |
| abstract_inverted_index.models’ | 113 |
| abstract_inverted_index.DistilBART | 70 |
| abstract_inverted_index.documents. | 26 |
| abstract_inverted_index.fine-tuned | 46 |
| abstract_inverted_index.importance | 93 |
| abstract_inverted_index.interfaces | 109 |
| abstract_inverted_index.mechanisms | 32 |
| abstract_inverted_index.resolution | 35 |
| abstract_inverted_index.resources. | 97 |
| abstract_inverted_index.techniques | 5 |
| abstract_inverted_index.DistilBART, | 42 |
| abstract_inverted_index.coreference | 34 |
| abstract_inverted_index.improvement | 78 |
| abstract_inverted_index.integrating | 30 |
| abstract_inverted_index.multi-modal | 104 |
| abstract_inverted_index.performance | 59 |
| abstract_inverted_index.significant | 58 |
| abstract_inverted_index.transformer | 8 |
| abstract_inverted_index.LongT5—were | 45 |
| abstract_inverted_index.computational | 96 |
| abstract_inverted_index.effectiveness | 86 |
| abstract_inverted_index.methodologies | 89 |
| abstract_inverted_index.models—LED, | 41 |
| abstract_inverted_index.multi-lingual | 102 |
| abstract_inverted_index.summarization | 4 |
| abstract_inverted_index.user-friendly | 108 |
| abstract_inverted_index.applicability. | 114 |
| abstract_inverted_index.self-attention | 31 |
| abstract_inverted_index.BigBird-Pegasus, | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |