Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s00330-024-10786-5
Objectives Developing a deep learning radiomics model from longitudinal breast ultrasound and sonographer’s axillary ultrasound diagnosis for predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) in breast cancer. Methods Breast cancer patients undergoing NAC followed by surgery were recruited from three centers between November 2016 and December 2022. We collected ultrasound images for extracting tumor-derived radiomics and deep learning features, selecting quantitative features through various methods. Two machine learning models based on random forest were developed using pre-NAC and post-NAC features. A support vector machine integrated these data into a fusion model, evaluated via the area under the curve (AUC), decision curve analysis, and calibration curves. We compared the fusion model’s performance against sonographer’s diagnosis from pre-NAC and post-NAC axillary ultrasonography, referencing histological outcomes from sentinel lymph node biopsy or axillary lymph node dissection. Results In the validation cohort, the fusion model outperformed both pre-NAC (AUC: 0.899 vs. 0.786, p < 0.001) and post-NAC models (AUC: 0.899 vs. 0.853, p = 0.014), as well as the sonographer’s diagnosis of ALN status on pre-NAC and post-NAC axillary ultrasonography (AUC: 0.899 vs. 0.719, p < 0.001). Decision curve analysis revealed patient benefits from the fusion model across threshold probabilities from 0.02 to 0.98. The model also enhanced sonographer’s diagnostic ability, increasing accuracy from 71.9% to 79.2%. Conclusion The deep learning radiomics model accurately predicted the ALN response to NAC in breast cancer. Furthermore, the model will assist sonographers to improve their diagnostic ability on ALN status before surgery. Clinical relevance statement Our AI model based on pre- and post-neoadjuvant chemotherapy ultrasound can accurately predict axillary lymph node metastasis and assist sonographer’s axillary diagnosis. Key Points Axillary lymph node metastasis status affects the choice of surgical treatment, and currently relies on subjective ultrasound . Our AI model outperformed sonographer’s visual diagnosis on axillary ultrasound . Our deep learning radiomics model can improve sonographers’ diagnosis and might assist in surgical decision-making .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s00330-024-10786-5
- https://link.springer.com/content/pdf/10.1007/s00330-024-10786-5.pdf
- OA Status
- hybrid
- Cited By
- 17
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396811340
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396811340Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s00330-024-10786-5Digital Object Identifier
- Title
-
Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-10Full publication date if available
- Authors
-
Ying Fu, Yutao Lei, Yühong Huang, Mei Fang, Song Wang, Kun Yan, Yihua Wang, Yihan Ma, Ligang CuiList of authors in order
- Landing page
-
https://doi.org/10.1007/s00330-024-10786-5Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s00330-024-10786-5.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s00330-024-10786-5.pdfDirect OA link when available
- Concepts
-
Sonographer, Medicine, Breast cancer, Radiology, Ultrasound, Lymph node, Echogenicity, Sentinel lymph node, Internal medicine, CancerTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 14, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396811340 |
|---|---|
| doi | https://doi.org/10.1007/s00330-024-10786-5 |
| ids.doi | https://doi.org/10.1007/s00330-024-10786-5 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38724768 |
| ids.openalex | https://openalex.org/W4396811340 |
| fwci | 13.9242549 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000000981 |
| mesh[1].descriptor_ui | D001943 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | diagnostic imaging |
| mesh[1].descriptor_name | Breast Neoplasms |
| mesh[2].qualifier_ui | Q000188 |
| mesh[2].descriptor_ui | D001943 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | drug therapy |
| mesh[2].descriptor_name | Breast Neoplasms |
| mesh[3].qualifier_ui | Q000473 |
| mesh[3].descriptor_ui | D001943 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | pathology |
| mesh[3].descriptor_name | Breast Neoplasms |
| mesh[4].qualifier_ui | Q000628 |
| mesh[4].descriptor_ui | D001943 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | therapy |
| mesh[4].descriptor_name | Breast Neoplasms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D005260 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Female |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D020360 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Neoadjuvant Therapy |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001365 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Axilla |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008875 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Middle Aged |
| mesh[9].qualifier_ui | Q000000981 |
| mesh[9].descriptor_ui | D008198 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | diagnostic imaging |
| mesh[9].descriptor_name | Lymph Nodes |
| mesh[10].qualifier_ui | Q000473 |
| mesh[10].descriptor_ui | D008198 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | pathology |
| mesh[10].descriptor_name | Lymph Nodes |
| mesh[11].qualifier_ui | Q000000981 |
| mesh[11].descriptor_ui | D008207 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | diagnostic imaging |
| mesh[11].descriptor_name | Lymphatic Metastasis |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000077321 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Deep Learning |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000328 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Adult |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D016217 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Ultrasonography, Mammary |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000368 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Aged |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D011237 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Predictive Value of Tests |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D006801 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Humans |
| mesh[18].qualifier_ui | Q000000981 |
| mesh[18].descriptor_ui | D001943 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | diagnostic imaging |
| mesh[18].descriptor_name | Breast Neoplasms |
| mesh[19].qualifier_ui | Q000188 |
| mesh[19].descriptor_ui | D001943 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | drug therapy |
| mesh[19].descriptor_name | Breast Neoplasms |
| mesh[20].qualifier_ui | Q000473 |
| mesh[20].descriptor_ui | D001943 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | pathology |
| mesh[20].descriptor_name | Breast Neoplasms |
| mesh[21].qualifier_ui | Q000628 |
| mesh[21].descriptor_ui | D001943 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | therapy |
| mesh[21].descriptor_name | Breast Neoplasms |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D005260 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Female |
| mesh[23].qualifier_ui | Q000379 |
| mesh[23].descriptor_ui | D020360 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | methods |
| mesh[23].descriptor_name | Neoadjuvant Therapy |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D001365 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Axilla |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D008875 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Middle Aged |
| mesh[26].qualifier_ui | Q000000981 |
| mesh[26].descriptor_ui | D008198 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | diagnostic imaging |
| mesh[26].descriptor_name | Lymph Nodes |
| mesh[27].qualifier_ui | Q000473 |
| mesh[27].descriptor_ui | D008198 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | pathology |
| mesh[27].descriptor_name | Lymph Nodes |
| mesh[28].qualifier_ui | Q000000981 |
| mesh[28].descriptor_ui | D008207 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | diagnostic imaging |
| mesh[28].descriptor_name | Lymphatic Metastasis |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000077321 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Deep Learning |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000328 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Adult |
| mesh[31].qualifier_ui | Q000379 |
| mesh[31].descriptor_ui | D016217 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | methods |
| mesh[31].descriptor_name | Ultrasonography, Mammary |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D000368 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Aged |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D011237 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Predictive Value of Tests |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D006801 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Humans |
| mesh[35].qualifier_ui | Q000000981 |
| mesh[35].descriptor_ui | D001943 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | diagnostic imaging |
| mesh[35].descriptor_name | Breast Neoplasms |
| mesh[36].qualifier_ui | Q000188 |
| mesh[36].descriptor_ui | D001943 |
| mesh[36].is_major_topic | True |
| mesh[36].qualifier_name | drug therapy |
| mesh[36].descriptor_name | Breast Neoplasms |
| mesh[37].qualifier_ui | Q000473 |
| mesh[37].descriptor_ui | D001943 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | pathology |
| mesh[37].descriptor_name | Breast Neoplasms |
| mesh[38].qualifier_ui | Q000628 |
| mesh[38].descriptor_ui | D001943 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | therapy |
| mesh[38].descriptor_name | Breast Neoplasms |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D005260 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Female |
| mesh[40].qualifier_ui | Q000379 |
| mesh[40].descriptor_ui | D020360 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | methods |
| mesh[40].descriptor_name | Neoadjuvant Therapy |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D001365 |
| mesh[41].is_major_topic | True |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Axilla |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D008875 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Middle Aged |
| mesh[43].qualifier_ui | Q000000981 |
| mesh[43].descriptor_ui | D008198 |
| mesh[43].is_major_topic | True |
| mesh[43].qualifier_name | diagnostic imaging |
| mesh[43].descriptor_name | Lymph Nodes |
| mesh[44].qualifier_ui | Q000473 |
| mesh[44].descriptor_ui | D008198 |
| mesh[44].is_major_topic | True |
| mesh[44].qualifier_name | pathology |
| mesh[44].descriptor_name | Lymph Nodes |
| mesh[45].qualifier_ui | Q000000981 |
| mesh[45].descriptor_ui | D008207 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | diagnostic imaging |
| mesh[45].descriptor_name | Lymphatic Metastasis |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D000077321 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Deep Learning |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D000328 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Adult |
| mesh[48].qualifier_ui | Q000379 |
| mesh[48].descriptor_ui | D016217 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | methods |
| mesh[48].descriptor_name | Ultrasonography, Mammary |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D000368 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Aged |
| type | article |
| title | Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study |
| biblio.issue | 11 |
| biblio.volume | 34 |
| biblio.last_page | 7089 |
| biblio.first_page | 7080 |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10183 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Breast Cancer Treatment Studies |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9991000294685364 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list.value | 3290 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3990 |
| apc_paid.value | 3290 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3990 |
| concepts[0].id | https://openalex.org/C2778941581 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9082624912261963 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11251722 |
| concepts[0].display_name | Sonographer |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8499765396118164 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C530470458 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6677253246307373 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[2].display_name | Breast cancer |
| concepts[3].id | https://openalex.org/C126838900 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5953620672225952 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[3].display_name | Radiology |
| concepts[4].id | https://openalex.org/C143753070 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5169324278831482 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q162564 |
| concepts[4].display_name | Ultrasound |
| concepts[5].id | https://openalex.org/C2780849966 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5144234299659729 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q170758 |
| concepts[5].display_name | Lymph node |
| concepts[6].id | https://openalex.org/C206111553 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4440380334854126 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3501532 |
| concepts[6].display_name | Echogenicity |
| concepts[7].id | https://openalex.org/C2780212769 |
| concepts[7].level | 4 |
| concepts[7].score | 0.4348453879356384 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q776290 |
| concepts[7].display_name | Sentinel lymph node |
| concepts[8].id | https://openalex.org/C126322002 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2501884400844574 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[8].display_name | Internal medicine |
| concepts[9].id | https://openalex.org/C121608353 |
| concepts[9].level | 2 |
| concepts[9].score | 0.24527141451835632 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[9].display_name | Cancer |
| keywords[0].id | https://openalex.org/keywords/sonographer |
| keywords[0].score | 0.9082624912261963 |
| keywords[0].display_name | Sonographer |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.8499765396118164 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/breast-cancer |
| keywords[2].score | 0.6677253246307373 |
| keywords[2].display_name | Breast cancer |
| keywords[3].id | https://openalex.org/keywords/radiology |
| keywords[3].score | 0.5953620672225952 |
| keywords[3].display_name | Radiology |
| keywords[4].id | https://openalex.org/keywords/ultrasound |
| keywords[4].score | 0.5169324278831482 |
| keywords[4].display_name | Ultrasound |
| keywords[5].id | https://openalex.org/keywords/lymph-node |
| keywords[5].score | 0.5144234299659729 |
| keywords[5].display_name | Lymph node |
| keywords[6].id | https://openalex.org/keywords/echogenicity |
| keywords[6].score | 0.4440380334854126 |
| keywords[6].display_name | Echogenicity |
| keywords[7].id | https://openalex.org/keywords/sentinel-lymph-node |
| keywords[7].score | 0.4348453879356384 |
| keywords[7].display_name | Sentinel lymph node |
| keywords[8].id | https://openalex.org/keywords/internal-medicine |
| keywords[8].score | 0.2501884400844574 |
| keywords[8].display_name | Internal medicine |
| keywords[9].id | https://openalex.org/keywords/cancer |
| keywords[9].score | 0.24527141451835632 |
| keywords[9].display_name | Cancer |
| language | en |
| locations[0].id | doi:10.1007/s00330-024-10786-5 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4819472 |
| locations[0].source.issn | 0938-7994, 1432-1084 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0938-7994 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | European Radiology |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s00330-024-10786-5.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | European Radiology |
| locations[0].landing_page_url | https://doi.org/10.1007/s00330-024-10786-5 |
| locations[1].id | pmid:38724768 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | European radiology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38724768 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11519196 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Eur Radiol |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11519196 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5027065137 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4292-962X |
| authorships[0].author.display_name | Ying Fu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210141942 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Ultrasound, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China |
| authorships[0].institutions[0].id | https://openalex.org/I20231570 |
| authorships[0].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Peking University |
| authorships[0].institutions[1].id | https://openalex.org/I4210141942 |
| authorships[0].institutions[1].ror | https://ror.org/04wwqze12 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210141942 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Peking University Third Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ying Fu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Ultrasound, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China |
| authorships[1].author.id | https://openalex.org/A5077221151 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yutao Lei |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210141942 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of General Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China |
| authorships[1].institutions[0].id | https://openalex.org/I20231570 |
| authorships[1].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Peking University |
| authorships[1].institutions[1].id | https://openalex.org/I4210141942 |
| authorships[1].institutions[1].ror | https://ror.org/04wwqze12 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210141942 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Peking University Third Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu-Tao Lei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of General Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China |
| authorships[2].author.id | https://openalex.org/A5038407194 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7562-2427 |
| authorships[2].author.display_name | Yühong Huang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210145693, https://openalex.org/I4210153930, https://openalex.org/I58200834 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210145693 |
| authorships[2].institutions[0].ror | https://ror.org/0432p8t34 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210145693 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangdong Academy of Medical Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210153930 |
| authorships[2].institutions[1].ror | https://ror.org/045kpgw45 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210153930 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Guangdong Provincial People's Hospital |
| authorships[2].institutions[2].id | https://openalex.org/I58200834 |
| authorships[2].institutions[2].ror | https://ror.org/01vjw4z39 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I58200834 |
| authorships[2].institutions[2].country_code | CN |
| authorships[2].institutions[2].display_name | Southern Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu-Hong Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China |
| authorships[3].author.id | https://openalex.org/A5101452577 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8816-475X |
| authorships[3].author.display_name | Mei Fang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210141942 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China |
| authorships[3].institutions[0].id | https://openalex.org/I20231570 |
| authorships[3].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Peking University |
| authorships[3].institutions[1].id | https://openalex.org/I4210141942 |
| authorships[3].institutions[1].ror | https://ror.org/04wwqze12 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210141942 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Peking University Third Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fang Mei |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China |
| authorships[4].author.id | https://openalex.org/A5102848452 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7294-9627 |
| authorships[4].author.display_name | Song Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210093964 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Ultrasound, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), No. 52 Fucheng Road, Haidian District, Beijing, 100142, China |
| authorships[4].institutions[0].id | https://openalex.org/I20231570 |
| authorships[4].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Peking University |
| authorships[4].institutions[1].id | https://openalex.org/I4210093964 |
| authorships[4].institutions[1].ror | https://ror.org/00nyxxr91 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210093964 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Peking University Cancer Hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Song Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Ultrasound, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), No. 52 Fucheng Road, Haidian District, Beijing, 100142, China |
| authorships[5].author.id | https://openalex.org/A5090781096 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5841-9857 |
| authorships[5].author.display_name | Kun Yan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210093964 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Ultrasound, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), No. 52 Fucheng Road, Haidian District, Beijing, 100142, China |
| authorships[5].institutions[0].id | https://openalex.org/I20231570 |
| authorships[5].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Peking University |
| authorships[5].institutions[1].id | https://openalex.org/I4210093964 |
| authorships[5].institutions[1].ror | https://ror.org/00nyxxr91 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210093964 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Peking University Cancer Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kun Yan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Ultrasound, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), No. 52 Fucheng Road, Haidian District, Beijing, 100142, China |
| authorships[6].author.id | https://openalex.org/A5100703458 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5561-0648 |
| authorships[6].author.display_name | Yihua Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I137506752, https://openalex.org/I4210109964 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Ultrasound, North China University of Science and Technology Affiliated Hospital, 73 South Jianshe Road, Lubei District, Tangshan, 066300, China |
| authorships[6].institutions[0].id | https://openalex.org/I137506752 |
| authorships[6].institutions[0].ror | https://ror.org/04z4wmb81 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I137506752 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | North China University of Science and Technology |
| authorships[6].institutions[1].id | https://openalex.org/I4210109964 |
| authorships[6].institutions[1].ror | https://ror.org/015kdfj59 |
| authorships[6].institutions[1].type | healthcare |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210109964 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | North China University of Science and Technology Affiliated Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yi-Hua Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Ultrasound, North China University of Science and Technology Affiliated Hospital, 73 South Jianshe Road, Lubei District, Tangshan, 066300, China |
| authorships[7].author.id | https://openalex.org/A5100567502 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Yihan Ma |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210141942 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Ultrasound, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China |
| authorships[7].institutions[0].id | https://openalex.org/I20231570 |
| authorships[7].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Peking University |
| authorships[7].institutions[1].id | https://openalex.org/I4210141942 |
| authorships[7].institutions[1].ror | https://ror.org/04wwqze12 |
| authorships[7].institutions[1].type | healthcare |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210141942 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Peking University Third Hospital |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yi-Han Ma |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Ultrasound, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China |
| authorships[8].author.id | https://openalex.org/A5045221457 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-0717-7445 |
| authorships[8].author.display_name | Ligang Cui |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210141942 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Ultrasound, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China |
| authorships[8].institutions[0].id | https://openalex.org/I20231570 |
| authorships[8].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Peking University |
| authorships[8].institutions[1].id | https://openalex.org/I4210141942 |
| authorships[8].institutions[1].ror | https://ror.org/04wwqze12 |
| authorships[8].institutions[1].type | healthcare |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210141942 |
| authorships[8].institutions[1].country_code | CN |
| authorships[8].institutions[1].display_name | Peking University Third Hospital |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Li-Gang Cui |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Ultrasound, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s00330-024-10786-5.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W2174001346, https://openalex.org/W2526577485, https://openalex.org/W159991367, https://openalex.org/W2907902235, https://openalex.org/W1984583391, https://openalex.org/W2802721033, https://openalex.org/W4241217511, https://openalex.org/W2034839679, https://openalex.org/W2556291463, https://openalex.org/W3028729327 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 14 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1007/s00330-024-10786-5 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4819472 |
| best_oa_location.source.issn | 0938-7994, 1432-1084 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0938-7994 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | European Radiology |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00330-024-10786-5.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | European Radiology |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s00330-024-10786-5 |
| primary_location.id | doi:10.1007/s00330-024-10786-5 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4819472 |
| primary_location.source.issn | 0938-7994, 1432-1084 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0938-7994 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | European Radiology |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00330-024-10786-5.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | European Radiology |
| primary_location.landing_page_url | https://doi.org/10.1007/s00330-024-10786-5 |
| publication_date | 2024-05-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3128646645, https://openalex.org/W4206765651, https://openalex.org/W2810754530, https://openalex.org/W2557607078, https://openalex.org/W2131719808, https://openalex.org/W3016606954, https://openalex.org/W2521067254, https://openalex.org/W2988140323, https://openalex.org/W2990463311, https://openalex.org/W3018723400, https://openalex.org/W2795292841, https://openalex.org/W2128739912, https://openalex.org/W3207303885, https://openalex.org/W2339612870, https://openalex.org/W2114692465, https://openalex.org/W2101979288, https://openalex.org/W2612284264, https://openalex.org/W4392360957, https://openalex.org/W2328176404, https://openalex.org/W3040065991, https://openalex.org/W3111471645, https://openalex.org/W2018930582, https://openalex.org/W2922056162, https://openalex.org/W2090384234, https://openalex.org/W4225915953, https://openalex.org/W3096768055 |
| referenced_works_count | 26 |
| abstract_inverted_index.. | 293, 304, 320 |
| abstract_inverted_index.= | 163 |
| abstract_inverted_index.A | 84 |
| abstract_inverted_index.a | 3, 92 |
| abstract_inverted_index.p | 152, 162, 184 |
| abstract_inverted_index.AI | 253, 295 |
| abstract_inverted_index.In | 138 |
| abstract_inverted_index.We | 51, 109 |
| abstract_inverted_index.as | 165, 167 |
| abstract_inverted_index.by | 38 |
| abstract_inverted_index.in | 28, 230, 317 |
| abstract_inverted_index.of | 171, 284 |
| abstract_inverted_index.on | 74, 174, 244, 256, 290, 301 |
| abstract_inverted_index.or | 132 |
| abstract_inverted_index.to | 24, 202, 215, 228, 239 |
| abstract_inverted_index.ALN | 172, 226, 245 |
| abstract_inverted_index.Key | 274 |
| abstract_inverted_index.NAC | 36, 229 |
| abstract_inverted_index.Our | 252, 294, 305 |
| abstract_inverted_index.The | 204, 218 |
| abstract_inverted_index.Two | 69 |
| abstract_inverted_index.and | 12, 48, 59, 81, 106, 120, 155, 176, 258, 269, 287, 314 |
| abstract_inverted_index.can | 262, 310 |
| abstract_inverted_index.for | 17, 55 |
| abstract_inverted_index.the | 97, 100, 111, 139, 142, 168, 194, 225, 234, 282 |
| abstract_inverted_index.via | 96 |
| abstract_inverted_index.vs. | 150, 160, 182 |
| abstract_inverted_index.< | 153, 185 |
| abstract_inverted_index.0.02 | 201 |
| abstract_inverted_index.2016 | 47 |
| abstract_inverted_index.also | 206 |
| abstract_inverted_index.area | 98 |
| abstract_inverted_index.both | 146 |
| abstract_inverted_index.data | 90 |
| abstract_inverted_index.deep | 4, 60, 219, 306 |
| abstract_inverted_index.from | 8, 42, 118, 127, 193, 200, 213 |
| abstract_inverted_index.into | 91 |
| abstract_inverted_index.node | 21, 130, 135, 267, 278 |
| abstract_inverted_index.pre- | 257 |
| abstract_inverted_index.well | 166 |
| abstract_inverted_index.were | 40, 77 |
| abstract_inverted_index.will | 236 |
| abstract_inverted_index.(ALN) | 22 |
| abstract_inverted_index.(AUC: | 148, 158, 180 |
| abstract_inverted_index.(NAC) | 27 |
| abstract_inverted_index.0.899 | 149, 159, 181 |
| abstract_inverted_index.0.98. | 203 |
| abstract_inverted_index.2022. | 50 |
| abstract_inverted_index.71.9% | 214 |
| abstract_inverted_index.based | 73, 255 |
| abstract_inverted_index.curve | 101, 104, 188 |
| abstract_inverted_index.lymph | 20, 129, 134, 266, 277 |
| abstract_inverted_index.might | 315 |
| abstract_inverted_index.model | 7, 144, 196, 205, 222, 235, 254, 296, 309 |
| abstract_inverted_index.their | 241 |
| abstract_inverted_index.these | 89 |
| abstract_inverted_index.three | 43 |
| abstract_inverted_index.under | 99 |
| abstract_inverted_index.using | 79 |
| abstract_inverted_index.(AUC), | 102 |
| abstract_inverted_index.0.001) | 154 |
| abstract_inverted_index.0.719, | 183 |
| abstract_inverted_index.0.786, | 151 |
| abstract_inverted_index.0.853, | 161 |
| abstract_inverted_index.79.2%. | 216 |
| abstract_inverted_index.Breast | 32 |
| abstract_inverted_index.Points | 275 |
| abstract_inverted_index.across | 197 |
| abstract_inverted_index.assist | 237, 270, 316 |
| abstract_inverted_index.before | 247 |
| abstract_inverted_index.biopsy | 131 |
| abstract_inverted_index.breast | 10, 29, 231 |
| abstract_inverted_index.cancer | 33 |
| abstract_inverted_index.choice | 283 |
| abstract_inverted_index.forest | 76 |
| abstract_inverted_index.fusion | 93, 112, 143, 195 |
| abstract_inverted_index.images | 54 |
| abstract_inverted_index.model, | 94 |
| abstract_inverted_index.models | 72, 157 |
| abstract_inverted_index.random | 75 |
| abstract_inverted_index.relies | 289 |
| abstract_inverted_index.status | 173, 246, 280 |
| abstract_inverted_index.vector | 86 |
| abstract_inverted_index.visual | 299 |
| abstract_inverted_index.0.001). | 186 |
| abstract_inverted_index.0.014), | 164 |
| abstract_inverted_index.Methods | 31 |
| abstract_inverted_index.Results | 137 |
| abstract_inverted_index.ability | 243 |
| abstract_inverted_index.affects | 281 |
| abstract_inverted_index.against | 115 |
| abstract_inverted_index.between | 45 |
| abstract_inverted_index.cancer. | 30, 232 |
| abstract_inverted_index.centers | 44 |
| abstract_inverted_index.cohort, | 141 |
| abstract_inverted_index.curves. | 108 |
| abstract_inverted_index.improve | 240, 311 |
| abstract_inverted_index.machine | 70, 87 |
| abstract_inverted_index.patient | 191 |
| abstract_inverted_index.pre-NAC | 80, 119, 147, 175 |
| abstract_inverted_index.predict | 264 |
| abstract_inverted_index.support | 85 |
| abstract_inverted_index.surgery | 39 |
| abstract_inverted_index.through | 66 |
| abstract_inverted_index.various | 67 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Axillary | 276 |
| abstract_inverted_index.Clinical | 249 |
| abstract_inverted_index.December | 49 |
| abstract_inverted_index.Decision | 187 |
| abstract_inverted_index.November | 46 |
| abstract_inverted_index.ability, | 210 |
| abstract_inverted_index.accuracy | 212 |
| abstract_inverted_index.analysis | 189 |
| abstract_inverted_index.axillary | 14, 19, 122, 133, 178, 265, 272, 302 |
| abstract_inverted_index.benefits | 192 |
| abstract_inverted_index.compared | 110 |
| abstract_inverted_index.decision | 103 |
| abstract_inverted_index.enhanced | 207 |
| abstract_inverted_index.features | 65 |
| abstract_inverted_index.followed | 37 |
| abstract_inverted_index.learning | 5, 61, 71, 220, 307 |
| abstract_inverted_index.methods. | 68 |
| abstract_inverted_index.outcomes | 126 |
| abstract_inverted_index.patients | 34 |
| abstract_inverted_index.post-NAC | 82, 121, 156, 177 |
| abstract_inverted_index.response | 23, 227 |
| abstract_inverted_index.revealed | 190 |
| abstract_inverted_index.sentinel | 128 |
| abstract_inverted_index.surgery. | 248 |
| abstract_inverted_index.surgical | 285, 318 |
| abstract_inverted_index.analysis, | 105 |
| abstract_inverted_index.collected | 52 |
| abstract_inverted_index.currently | 288 |
| abstract_inverted_index.developed | 78 |
| abstract_inverted_index.diagnosis | 16, 117, 170, 300, 313 |
| abstract_inverted_index.evaluated | 95 |
| abstract_inverted_index.features, | 62 |
| abstract_inverted_index.features. | 83 |
| abstract_inverted_index.model’s | 113 |
| abstract_inverted_index.predicted | 224 |
| abstract_inverted_index.radiomics | 6, 58, 221, 308 |
| abstract_inverted_index.recruited | 41 |
| abstract_inverted_index.relevance | 250 |
| abstract_inverted_index.selecting | 63 |
| abstract_inverted_index.statement | 251 |
| abstract_inverted_index.threshold | 198 |
| abstract_inverted_index.Conclusion | 217 |
| abstract_inverted_index.Developing | 2 |
| abstract_inverted_index.Objectives | 1 |
| abstract_inverted_index.accurately | 223, 263 |
| abstract_inverted_index.diagnosis. | 273 |
| abstract_inverted_index.diagnostic | 209, 242 |
| abstract_inverted_index.extracting | 56 |
| abstract_inverted_index.increasing | 211 |
| abstract_inverted_index.integrated | 88 |
| abstract_inverted_index.metastasis | 268, 279 |
| abstract_inverted_index.predicting | 18 |
| abstract_inverted_index.subjective | 291 |
| abstract_inverted_index.treatment, | 286 |
| abstract_inverted_index.ultrasound | 11, 15, 53, 261, 292, 303 |
| abstract_inverted_index.undergoing | 35 |
| abstract_inverted_index.validation | 140 |
| abstract_inverted_index.calibration | 107 |
| abstract_inverted_index.dissection. | 136 |
| abstract_inverted_index.neoadjuvant | 25 |
| abstract_inverted_index.performance | 114 |
| abstract_inverted_index.referencing | 124 |
| abstract_inverted_index.Furthermore, | 233 |
| abstract_inverted_index.chemotherapy | 26, 260 |
| abstract_inverted_index.histological | 125 |
| abstract_inverted_index.longitudinal | 9 |
| abstract_inverted_index.outperformed | 145, 297 |
| abstract_inverted_index.quantitative | 64 |
| abstract_inverted_index.sonographers | 238 |
| abstract_inverted_index.probabilities | 199 |
| abstract_inverted_index.tumor-derived | 57 |
| abstract_inverted_index.decision-making | 319 |
| abstract_inverted_index.sonographers’ | 312 |
| abstract_inverted_index.sonographer’s | 13, 116, 169, 208, 271, 298 |
| abstract_inverted_index.ultrasonography | 179 |
| abstract_inverted_index.post-neoadjuvant | 259 |
| abstract_inverted_index.ultrasonography, | 123 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.98479845 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |