Looking From the Future: Multi-order Iterations Can Enhance Adversarial Attack Transferability Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.01925
Various methods try to enhance adversarial transferability by improving the generalization from different perspectives. In this paper, we rethink the optimization process and propose a novel sequence optimization concept, which is named Looking From the Future (LFF). LFF makes use of the original optimization process to refine the very first local optimization choice. Adapting the LFF concept to the adversarial attack task, we further propose an LFF attack as well as an MLFF attack with better generalization ability. Furthermore, guiding with the LFF concept, we propose an $LLF^{\mathcal{N}}$ attack which entends the LFF attack to a multi-order attack, further enhancing the transfer attack ability. All our proposed methods can be directly applied to the iteration-based attack methods. We evaluate our proposed method on the ImageNet1k dataset by applying several SOTA adversarial attack methods under four kinds of tasks. Experimental results show that our proposed method can greatly enhance the attack transferability. Ablation experiments are also applied to verify the effectiveness of each component. The source code will be released after this paper is accepted.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.01925
- https://arxiv.org/pdf/2407.01925
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400377785
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400377785Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.01925Digital Object Identifier
- Title
-
Looking From the Future: Multi-order Iterations Can Enhance Adversarial Attack TransferabilityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-02Full publication date if available
- Authors
-
Zijian Ying, Qianmu Li, Tao Wang, Zhichao Lian, Shunmei Meng, Xuyun ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.01925Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.01925Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.01925Direct OA link when available
- Concepts
-
Transferability, Adversarial system, Order (exchange), Computer science, Computer security, Artificial intelligence, Machine learning, Business, Finance, LogitTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400377785 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.01925 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.01925 |
| ids.openalex | https://openalex.org/W4400377785 |
| fwci | |
| type | preprint |
| title | Looking From the Future: Multi-order Iterations Can Enhance Adversarial Attack Transferability |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9941999912261963 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11699 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9580000042915344 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | High-Velocity Impact and Material Behavior |
| topics[2].id | https://openalex.org/T10806 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9311000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Energetic Materials and Combustion |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61272859 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9397028684616089 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7834031 |
| concepts[0].display_name | Transferability |
| concepts[1].id | https://openalex.org/C37736160 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8734075427055359 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[1].display_name | Adversarial system |
| concepts[2].id | https://openalex.org/C182306322 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6955280900001526 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1779371 |
| concepts[2].display_name | Order (exchange) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6322426795959473 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C38652104 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3416290879249573 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[4].display_name | Computer security |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2647520899772644 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.19867154955863953 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C144133560 |
| concepts[7].level | 0 |
| concepts[7].score | 0.17452853918075562 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[7].display_name | Business |
| concepts[8].id | https://openalex.org/C10138342 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[8].display_name | Finance |
| concepts[9].id | https://openalex.org/C140331021 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1868104 |
| concepts[9].display_name | Logit |
| keywords[0].id | https://openalex.org/keywords/transferability |
| keywords[0].score | 0.9397028684616089 |
| keywords[0].display_name | Transferability |
| keywords[1].id | https://openalex.org/keywords/adversarial-system |
| keywords[1].score | 0.8734075427055359 |
| keywords[1].display_name | Adversarial system |
| keywords[2].id | https://openalex.org/keywords/order |
| keywords[2].score | 0.6955280900001526 |
| keywords[2].display_name | Order (exchange) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6322426795959473 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/computer-security |
| keywords[4].score | 0.3416290879249573 |
| keywords[4].display_name | Computer security |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.2647520899772644 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.19867154955863953 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/business |
| keywords[7].score | 0.17452853918075562 |
| keywords[7].display_name | Business |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.01925 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.01925 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.01925 |
| locations[1].id | doi:10.48550/arxiv.2407.01925 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.01925 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5080000940 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1881-585X |
| authorships[0].author.display_name | Zijian Ying |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ying, Zijian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5090335612 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0998-1517 |
| authorships[1].author.display_name | Qianmu Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Qianmu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100453544 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5121-0599 |
| authorships[2].author.display_name | Tao Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Tao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5016645765 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6643-8975 |
| authorships[3].author.display_name | Zhichao Lian |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lian, Zhichao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5059161616 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6173-9787 |
| authorships[4].author.display_name | Shunmei Meng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Meng, Shunmei |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5076120553 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7353-4159 |
| authorships[5].author.display_name | Xuyun Zhang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhang, Xuyun |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.01925 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-07-06T00:00:00 |
| display_name | Looking From the Future: Multi-order Iterations Can Enhance Adversarial Attack Transferability |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9941999912261963 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W4288055406, https://openalex.org/W4200630034, https://openalex.org/W3137894200, https://openalex.org/W3092178728, https://openalex.org/W4226402597, https://openalex.org/W3132910851, https://openalex.org/W4377864639, https://openalex.org/W4392340763, https://openalex.org/W4283325551, https://openalex.org/W2997056298 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.01925 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.01925 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.01925 |
| primary_location.id | pmh:oai:arXiv.org:2407.01925 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.01925 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.01925 |
| publication_date | 2024-07-02 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 24, 95 |
| abstract_inverted_index.In | 14 |
| abstract_inverted_index.We | 117 |
| abstract_inverted_index.an | 65, 71, 86 |
| abstract_inverted_index.as | 68, 70 |
| abstract_inverted_index.be | 109, 167 |
| abstract_inverted_index.by | 7, 126 |
| abstract_inverted_index.is | 30, 172 |
| abstract_inverted_index.of | 40, 136, 160 |
| abstract_inverted_index.on | 122 |
| abstract_inverted_index.to | 3, 45, 57, 94, 112, 156 |
| abstract_inverted_index.we | 17, 62, 84 |
| abstract_inverted_index.All | 104 |
| abstract_inverted_index.LFF | 37, 55, 66, 82, 92 |
| abstract_inverted_index.The | 163 |
| abstract_inverted_index.and | 22 |
| abstract_inverted_index.are | 153 |
| abstract_inverted_index.can | 108, 145 |
| abstract_inverted_index.our | 105, 119, 142 |
| abstract_inverted_index.the | 9, 19, 34, 41, 47, 54, 58, 81, 91, 100, 113, 123, 148, 158 |
| abstract_inverted_index.try | 2 |
| abstract_inverted_index.use | 39 |
| abstract_inverted_index.From | 33 |
| abstract_inverted_index.MLFF | 72 |
| abstract_inverted_index.SOTA | 129 |
| abstract_inverted_index.also | 154 |
| abstract_inverted_index.code | 165 |
| abstract_inverted_index.each | 161 |
| abstract_inverted_index.four | 134 |
| abstract_inverted_index.from | 11 |
| abstract_inverted_index.show | 140 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.this | 15, 170 |
| abstract_inverted_index.very | 48 |
| abstract_inverted_index.well | 69 |
| abstract_inverted_index.will | 166 |
| abstract_inverted_index.with | 74, 80 |
| abstract_inverted_index.after | 169 |
| abstract_inverted_index.first | 49 |
| abstract_inverted_index.kinds | 135 |
| abstract_inverted_index.local | 50 |
| abstract_inverted_index.makes | 38 |
| abstract_inverted_index.named | 31 |
| abstract_inverted_index.novel | 25 |
| abstract_inverted_index.paper | 171 |
| abstract_inverted_index.task, | 61 |
| abstract_inverted_index.under | 133 |
| abstract_inverted_index.which | 29, 89 |
| abstract_inverted_index.(LFF). | 36 |
| abstract_inverted_index.Future | 35 |
| abstract_inverted_index.attack | 60, 67, 73, 88, 93, 102, 115, 131, 149 |
| abstract_inverted_index.better | 75 |
| abstract_inverted_index.method | 121, 144 |
| abstract_inverted_index.paper, | 16 |
| abstract_inverted_index.refine | 46 |
| abstract_inverted_index.source | 164 |
| abstract_inverted_index.tasks. | 137 |
| abstract_inverted_index.verify | 157 |
| abstract_inverted_index.Looking | 32 |
| abstract_inverted_index.Various | 0 |
| abstract_inverted_index.applied | 111, 155 |
| abstract_inverted_index.attack, | 97 |
| abstract_inverted_index.choice. | 52 |
| abstract_inverted_index.concept | 56 |
| abstract_inverted_index.dataset | 125 |
| abstract_inverted_index.enhance | 4, 147 |
| abstract_inverted_index.entends | 90 |
| abstract_inverted_index.further | 63, 98 |
| abstract_inverted_index.greatly | 146 |
| abstract_inverted_index.guiding | 79 |
| abstract_inverted_index.methods | 1, 107, 132 |
| abstract_inverted_index.process | 21, 44 |
| abstract_inverted_index.propose | 23, 64, 85 |
| abstract_inverted_index.results | 139 |
| abstract_inverted_index.rethink | 18 |
| abstract_inverted_index.several | 128 |
| abstract_inverted_index.Ablation | 151 |
| abstract_inverted_index.Adapting | 53 |
| abstract_inverted_index.ability. | 77, 103 |
| abstract_inverted_index.applying | 127 |
| abstract_inverted_index.concept, | 28, 83 |
| abstract_inverted_index.directly | 110 |
| abstract_inverted_index.evaluate | 118 |
| abstract_inverted_index.methods. | 116 |
| abstract_inverted_index.original | 42 |
| abstract_inverted_index.proposed | 106, 120, 143 |
| abstract_inverted_index.released | 168 |
| abstract_inverted_index.sequence | 26 |
| abstract_inverted_index.transfer | 101 |
| abstract_inverted_index.accepted. | 173 |
| abstract_inverted_index.different | 12 |
| abstract_inverted_index.enhancing | 99 |
| abstract_inverted_index.improving | 8 |
| abstract_inverted_index.ImageNet1k | 124 |
| abstract_inverted_index.component. | 162 |
| abstract_inverted_index.adversarial | 5, 59, 130 |
| abstract_inverted_index.experiments | 152 |
| abstract_inverted_index.multi-order | 96 |
| abstract_inverted_index.Experimental | 138 |
| abstract_inverted_index.Furthermore, | 78 |
| abstract_inverted_index.optimization | 20, 27, 43, 51 |
| abstract_inverted_index.effectiveness | 159 |
| abstract_inverted_index.perspectives. | 13 |
| abstract_inverted_index.generalization | 10, 76 |
| abstract_inverted_index.iteration-based | 114 |
| abstract_inverted_index.transferability | 6 |
| abstract_inverted_index.transferability. | 150 |
| abstract_inverted_index.$LLF^{\mathcal{N}}$ | 87 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |