Lorentzian contours for tree-level string amplitudes Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21468/scipostphys.17.3.078
· OA: W4402455633
We engineer compact contours on the moduli spaces of genus-zero Riemann surfaces that achieve analytic continuation from Euclidean to Lorentzian worldsheets. These generalized Pochhammer contours are based on the combinatorics of associahedra and make the analytic properties of tree-level amplitudes entirely manifest for any number and type of external strings. We use them in practice to perform first numerical computations of open and closed string amplitudes directly in the physical kinematics for n=4,5,6,7,8,9 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>6</mml:mn> <mml:mo>,</mml:mo> <mml:mn>7</mml:mn> <mml:mo>,</mml:mo> <mml:mn>8</mml:mn> <mml:mo>,</mml:mo> <mml:mn>9</mml:mn> </mml:mrow> </mml:math> . We provide a code that allows anyone to do such computations.