Loss-Driven Channel Pruning of Convolutional Neural Networks Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1587/transinf.2019edl8200
The increase in computation cost and storage of convolutional neural networks (CNNs) severely hinders their applications on limited-resources devices in recent years. As a result, there is impending necessity to accelerate the networks by certain methods. In this paper, we propose a loss-driven method to prune redundant channels of CNNs. It identifies unimportant channels by using Taylor expansion technique regarding to scaling and shifting factors, and prunes those channels by fixed percentile threshold. By doing so, we obtain a compact network with less parameters and FLOPs consumption. In experimental section, we evaluate the proposed method in CIFAR datasets with several popular networks, including VGG-19, DenseNet-40 and ResNet-164, and experimental results demonstrate the proposed method is able to prune over 70% channels and parameters with no performance loss. Moreover, iterative pruning could be used to obtain more compact network.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1587/transinf.2019edl8200
- https://www.jstage.jst.go.jp/article/transinf/E103.D/5/E103.D_2019EDL8200/_pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3022581078
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3022581078Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1587/transinf.2019edl8200Digital Object Identifier
- Title
-
Loss-Driven Channel Pruning of Convolutional Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-30Full publication date if available
- Authors
-
Xin Long, Xiangrong Zeng, Chen Chen, Huaxin Xiao, Maojun ZhangList of authors in order
- Landing page
-
https://doi.org/10.1587/transinf.2019edl8200Publisher landing page
- PDF URL
-
https://www.jstage.jst.go.jp/article/transinf/E103.D/5/E103.D_2019EDL8200/_pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.jstage.jst.go.jp/article/transinf/E103.D/5/E103.D_2019EDL8200/_pdfDirect OA link when available
- Concepts
-
Computer science, Pruning, FLOPS, Convolutional neural network, Computation, Scaling, Channel (broadcasting), Residual neural network, Reduction (mathematics), Algorithm, Artificial intelligence, Pattern recognition (psychology), Computer network, Parallel computing, Mathematics, Biology, Agronomy, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3022581078 |
|---|---|
| doi | https://doi.org/10.1587/transinf.2019edl8200 |
| ids.doi | https://doi.org/10.1587/transinf.2019edl8200 |
| ids.mag | 3022581078 |
| ids.openalex | https://openalex.org/W3022581078 |
| fwci | 0.20993464 |
| type | article |
| title | Loss-Driven Channel Pruning of Convolutional Neural Networks |
| biblio.issue | 5 |
| biblio.volume | E103.D |
| biblio.last_page | 1194 |
| biblio.first_page | 1190 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.854586124420166 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C108010975 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8315805196762085 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q500094 |
| concepts[1].display_name | Pruning |
| concepts[2].id | https://openalex.org/C3826847 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8306771516799927 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188768 |
| concepts[2].display_name | FLOPS |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7626126408576965 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C45374587 |
| concepts[4].level | 2 |
| concepts[4].score | 0.577837347984314 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[4].display_name | Computation |
| concepts[5].id | https://openalex.org/C99844830 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5651149749755859 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[5].display_name | Scaling |
| concepts[6].id | https://openalex.org/C127162648 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5425522923469543 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[6].display_name | Channel (broadcasting) |
| concepts[7].id | https://openalex.org/C2944601119 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5168288350105286 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q43744058 |
| concepts[7].display_name | Residual neural network |
| concepts[8].id | https://openalex.org/C111335779 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4891100525856018 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[8].display_name | Reduction (mathematics) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.46941882371902466 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3546299338340759 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3435346484184265 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C31258907 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1356777846813202 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[12].display_name | Computer network |
| concepts[13].id | https://openalex.org/C173608175 |
| concepts[13].level | 1 |
| concepts[13].score | 0.13493701815605164 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[13].display_name | Parallel computing |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.09864270687103271 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C6557445 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[16].display_name | Agronomy |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.854586124420166 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pruning |
| keywords[1].score | 0.8315805196762085 |
| keywords[1].display_name | Pruning |
| keywords[2].id | https://openalex.org/keywords/flops |
| keywords[2].score | 0.8306771516799927 |
| keywords[2].display_name | FLOPS |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.7626126408576965 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/computation |
| keywords[4].score | 0.577837347984314 |
| keywords[4].display_name | Computation |
| keywords[5].id | https://openalex.org/keywords/scaling |
| keywords[5].score | 0.5651149749755859 |
| keywords[5].display_name | Scaling |
| keywords[6].id | https://openalex.org/keywords/channel |
| keywords[6].score | 0.5425522923469543 |
| keywords[6].display_name | Channel (broadcasting) |
| keywords[7].id | https://openalex.org/keywords/residual-neural-network |
| keywords[7].score | 0.5168288350105286 |
| keywords[7].display_name | Residual neural network |
| keywords[8].id | https://openalex.org/keywords/reduction |
| keywords[8].score | 0.4891100525856018 |
| keywords[8].display_name | Reduction (mathematics) |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.46941882371902466 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3546299338340759 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3435346484184265 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/computer-network |
| keywords[12].score | 0.1356777846813202 |
| keywords[12].display_name | Computer network |
| keywords[13].id | https://openalex.org/keywords/parallel-computing |
| keywords[13].score | 0.13493701815605164 |
| keywords[13].display_name | Parallel computing |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.09864270687103271 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1587/transinf.2019edl8200 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2486202937 |
| locations[0].source.issn | 0916-8532, 1745-1361 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0916-8532 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEICE Transactions on Information and Systems |
| locations[0].source.host_organization | https://openalex.org/P4320800604 |
| locations[0].source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4320800604 |
| locations[0].source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://www.jstage.jst.go.jp/article/transinf/E103.D/5/E103.D_2019EDL8200/_pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEICE Transactions on Information and Systems |
| locations[0].landing_page_url | https://doi.org/10.1587/transinf.2019edl8200 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101532325 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3338-3223 |
| authorships[0].author.display_name | Xin Long |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[0].affiliations[0].raw_affiliation_string | National University of Defense Technology |
| authorships[0].institutions[0].id | https://openalex.org/I170215575 |
| authorships[0].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | National University of Defense Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xin LONG |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National University of Defense Technology |
| authorships[1].author.id | https://openalex.org/A5030783966 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4247-9684 |
| authorships[1].author.display_name | Xiangrong Zeng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[1].affiliations[0].raw_affiliation_string | National University of Defense Technology |
| authorships[1].institutions[0].id | https://openalex.org/I170215575 |
| authorships[1].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | National University of Defense Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiangrong ZENG |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National University of Defense Technology |
| authorships[2].author.id | https://openalex.org/A5100418568 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3957-7061 |
| authorships[2].author.display_name | Chen Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[2].affiliations[0].raw_affiliation_string | National University of Defense Technology |
| authorships[2].institutions[0].id | https://openalex.org/I170215575 |
| authorships[2].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | National University of Defense Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen CHEN |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National University of Defense Technology |
| authorships[3].author.id | https://openalex.org/A5001902162 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4524-2698 |
| authorships[3].author.display_name | Huaxin Xiao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[3].affiliations[0].raw_affiliation_string | National University of Defense Technology |
| authorships[3].institutions[0].id | https://openalex.org/I170215575 |
| authorships[3].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | National University of Defense Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huaxin XIAO |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National University of Defense Technology |
| authorships[4].author.id | https://openalex.org/A5100770607 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6748-0545 |
| authorships[4].author.display_name | Maojun Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[4].affiliations[0].raw_affiliation_string | National University of Defense Technology |
| authorships[4].institutions[0].id | https://openalex.org/I170215575 |
| authorships[4].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | National University of Defense Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Maojun ZHANG |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National University of Defense Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.jstage.jst.go.jp/article/transinf/E103.D/5/E103.D_2019EDL8200/_pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Loss-Driven Channel Pruning of Convolutional Neural Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4315697128, https://openalex.org/W3005814217, https://openalex.org/W3134206242, https://openalex.org/W4287272376, https://openalex.org/W3092292339, https://openalex.org/W3213976941, https://openalex.org/W2604192360, https://openalex.org/W2958985755, https://openalex.org/W4360783045, https://openalex.org/W3160421061 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1587/transinf.2019edl8200 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2486202937 |
| best_oa_location.source.issn | 0916-8532, 1745-1361 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0916-8532 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEICE Transactions on Information and Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4320800604 |
| best_oa_location.source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4320800604 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.jstage.jst.go.jp/article/transinf/E103.D/5/E103.D_2019EDL8200/_pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEICE Transactions on Information and Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1587/transinf.2019edl8200 |
| primary_location.id | doi:10.1587/transinf.2019edl8200 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2486202937 |
| primary_location.source.issn | 0916-8532, 1745-1361 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0916-8532 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEICE Transactions on Information and Systems |
| primary_location.source.host_organization | https://openalex.org/P4320800604 |
| primary_location.source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4320800604 |
| primary_location.source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://www.jstage.jst.go.jp/article/transinf/E103.D/5/E103.D_2019EDL8200/_pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEICE Transactions on Information and Systems |
| primary_location.landing_page_url | https://doi.org/10.1587/transinf.2019edl8200 |
| publication_date | 2020-04-30 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2163605009, https://openalex.org/W2102605133, https://openalex.org/W2909577373, https://openalex.org/W2119144962, https://openalex.org/W2754084392, https://openalex.org/W2167215970, https://openalex.org/W1902934009, https://openalex.org/W2300242332, https://openalex.org/W2612445135, https://openalex.org/W2963125010, https://openalex.org/W2556833785, https://openalex.org/W2515385951, https://openalex.org/W2513419314, https://openalex.org/W2940141242, https://openalex.org/W2748428003, https://openalex.org/W2951886768, https://openalex.org/W2405920868 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 23, 41, 78 |
| abstract_inverted_index.As | 22 |
| abstract_inverted_index.By | 73 |
| abstract_inverted_index.In | 36, 87 |
| abstract_inverted_index.It | 50 |
| abstract_inverted_index.be | 131 |
| abstract_inverted_index.by | 33, 54, 69 |
| abstract_inverted_index.in | 2, 19, 95 |
| abstract_inverted_index.is | 26, 114 |
| abstract_inverted_index.no | 124 |
| abstract_inverted_index.of | 7, 48 |
| abstract_inverted_index.on | 16 |
| abstract_inverted_index.to | 29, 44, 60, 116, 133 |
| abstract_inverted_index.we | 39, 76, 90 |
| abstract_inverted_index.70% | 119 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 5, 62, 65, 84, 105, 107, 121 |
| abstract_inverted_index.so, | 75 |
| abstract_inverted_index.the | 31, 92, 111 |
| abstract_inverted_index.able | 115 |
| abstract_inverted_index.cost | 4 |
| abstract_inverted_index.less | 82 |
| abstract_inverted_index.more | 135 |
| abstract_inverted_index.over | 118 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.used | 132 |
| abstract_inverted_index.with | 81, 98, 123 |
| abstract_inverted_index.CIFAR | 96 |
| abstract_inverted_index.CNNs. | 49 |
| abstract_inverted_index.FLOPs | 85 |
| abstract_inverted_index.could | 130 |
| abstract_inverted_index.doing | 74 |
| abstract_inverted_index.fixed | 70 |
| abstract_inverted_index.loss. | 126 |
| abstract_inverted_index.prune | 45, 117 |
| abstract_inverted_index.their | 14 |
| abstract_inverted_index.there | 25 |
| abstract_inverted_index.those | 67 |
| abstract_inverted_index.using | 55 |
| abstract_inverted_index.(CNNs) | 11 |
| abstract_inverted_index.Taylor | 56 |
| abstract_inverted_index.method | 43, 94, 113 |
| abstract_inverted_index.neural | 9 |
| abstract_inverted_index.obtain | 77, 134 |
| abstract_inverted_index.paper, | 38 |
| abstract_inverted_index.prunes | 66 |
| abstract_inverted_index.recent | 20 |
| abstract_inverted_index.years. | 21 |
| abstract_inverted_index.VGG-19, | 103 |
| abstract_inverted_index.certain | 34 |
| abstract_inverted_index.compact | 79, 136 |
| abstract_inverted_index.devices | 18 |
| abstract_inverted_index.hinders | 13 |
| abstract_inverted_index.network | 80 |
| abstract_inverted_index.popular | 100 |
| abstract_inverted_index.propose | 40 |
| abstract_inverted_index.pruning | 129 |
| abstract_inverted_index.result, | 24 |
| abstract_inverted_index.results | 109 |
| abstract_inverted_index.scaling | 61 |
| abstract_inverted_index.several | 99 |
| abstract_inverted_index.storage | 6 |
| abstract_inverted_index.channels | 47, 53, 68, 120 |
| abstract_inverted_index.datasets | 97 |
| abstract_inverted_index.evaluate | 91 |
| abstract_inverted_index.factors, | 64 |
| abstract_inverted_index.increase | 1 |
| abstract_inverted_index.methods. | 35 |
| abstract_inverted_index.network. | 137 |
| abstract_inverted_index.networks | 10, 32 |
| abstract_inverted_index.proposed | 93, 112 |
| abstract_inverted_index.section, | 89 |
| abstract_inverted_index.severely | 12 |
| abstract_inverted_index.shifting | 63 |
| abstract_inverted_index.Moreover, | 127 |
| abstract_inverted_index.expansion | 57 |
| abstract_inverted_index.impending | 27 |
| abstract_inverted_index.including | 102 |
| abstract_inverted_index.iterative | 128 |
| abstract_inverted_index.necessity | 28 |
| abstract_inverted_index.networks, | 101 |
| abstract_inverted_index.redundant | 46 |
| abstract_inverted_index.regarding | 59 |
| abstract_inverted_index.technique | 58 |
| abstract_inverted_index.accelerate | 30 |
| abstract_inverted_index.identifies | 51 |
| abstract_inverted_index.parameters | 83, 122 |
| abstract_inverted_index.percentile | 71 |
| abstract_inverted_index.threshold. | 72 |
| abstract_inverted_index.DenseNet-40 | 104 |
| abstract_inverted_index.ResNet-164, | 106 |
| abstract_inverted_index.computation | 3 |
| abstract_inverted_index.demonstrate | 110 |
| abstract_inverted_index.loss-driven | 42 |
| abstract_inverted_index.performance | 125 |
| abstract_inverted_index.unimportant | 52 |
| abstract_inverted_index.applications | 15 |
| abstract_inverted_index.consumption. | 86 |
| abstract_inverted_index.experimental | 88, 108 |
| abstract_inverted_index.convolutional | 8 |
| abstract_inverted_index.limited-resources | 17 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.49360061 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |