Low complexity mode selection for H.266/VVC intra coding Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1016/j.icte.2021.08.018
The newest video compression standard, called Versatile Video Coding (H.266/VVC), outperforms its predecessor High Efficiency Video Coding (HEVC) by up to 50% in the matter of coding performance. The achievement results from the integrating of several sophisticated tools such as 32 extended angular modes for intra coding, advanced partitioning structure, and additional transform selection. However, these tools negatively deliver the computational cost of the VVC Test Model (VTM) in all-intra encoding configuration. The existing fast intra coding algorithms achieve a significant saving in computational time with a comparable rate distortion (RD) performance of VVC plus additional computational complexity. In this paper, we study the original strategy of VVC intra mode decision and analyze the correlation among the sum of absolute transformed differences (SATD) costs of the rough mode decision (RMD) and the RD costs of the rate distortion optimization (RDO) processes. Based on the useful correlations with an effective threshold formulation, we propose a fast intra prediction mode selection for the most time-consuming RDO process by selecting a small candidate set based on the SATD costs and calculating the time-consuming RD costs for only intra prediction modes of the small candidate set without a significant overhead. According to the experimental results, our proposed system can reduce up to 27.38% and on average 21.07% of the computation complexity of VTM version 5.0 with an insignificant quality degradation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.icte.2021.08.018
- OA Status
- gold
- Cited By
- 14
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3196289746
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3196289746Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.icte.2021.08.018Digital Object Identifier
- Title
-
Low complexity mode selection for H.266/VVC intra codingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-28Full publication date if available
- Authors
-
Ei Ei Tun, Supavadee Aramvith, Takao OnoyeList of authors in order
- Landing page
-
https://doi.org/10.1016/j.icte.2021.08.018Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.icte.2021.08.018Direct OA link when available
- Concepts
-
Coding (social sciences), Computer science, Computation, Algorithm, Computational complexity theory, Algorithmic efficiency, Mathematical optimization, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 4, 2022: 4Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3196289746 |
|---|---|
| doi | https://doi.org/10.1016/j.icte.2021.08.018 |
| ids.doi | https://doi.org/10.1016/j.icte.2021.08.018 |
| ids.mag | 3196289746 |
| ids.openalex | https://openalex.org/W3196289746 |
| fwci | 1.72775431 |
| type | article |
| title | Low complexity mode selection for H.266/VVC intra coding |
| biblio.issue | 1 |
| biblio.volume | 8 |
| biblio.last_page | 90 |
| biblio.first_page | 83 |
| topics[0].id | https://openalex.org/T10741 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Video Coding and Compression Technologies |
| topics[1].id | https://openalex.org/T11105 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image Processing Techniques |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.995199978351593 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | USD |
| apc_list.value_usd | 1500 |
| apc_paid.value | 1500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1500 |
| concepts[0].id | https://openalex.org/C179518139 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7251041531562805 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[0].display_name | Coding (social sciences) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5955024361610413 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C45374587 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5787320733070374 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[2].display_name | Computation |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5561971068382263 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C179799912 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5511201024055481 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205084 |
| concepts[4].display_name | Computational complexity theory |
| concepts[5].id | https://openalex.org/C116709606 |
| concepts[5].level | 3 |
| concepts[5].score | 0.44345638155937195 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1296251 |
| concepts[5].display_name | Algorithmic efficiency |
| concepts[6].id | https://openalex.org/C126255220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3421742916107178 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[6].display_name | Mathematical optimization |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3186054229736328 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2335854470729828 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/coding |
| keywords[0].score | 0.7251041531562805 |
| keywords[0].display_name | Coding (social sciences) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5955024361610413 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computation |
| keywords[2].score | 0.5787320733070374 |
| keywords[2].display_name | Computation |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5561971068382263 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/computational-complexity-theory |
| keywords[4].score | 0.5511201024055481 |
| keywords[4].display_name | Computational complexity theory |
| keywords[5].id | https://openalex.org/keywords/algorithmic-efficiency |
| keywords[5].score | 0.44345638155937195 |
| keywords[5].display_name | Algorithmic efficiency |
| keywords[6].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[6].score | 0.3421742916107178 |
| keywords[6].display_name | Mathematical optimization |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.3186054229736328 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.2335854470729828 |
| keywords[8].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1016/j.icte.2021.08.018 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898368220 |
| locations[0].source.issn | 2405-9595 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2405-9595 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ICT Express |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICT Express |
| locations[0].landing_page_url | https://doi.org/10.1016/j.icte.2021.08.018 |
| locations[1].id | pmh:oai:doaj.org/article:6ff442a68ff747acb070aaea120fc1b7 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ICT Express, Vol 8, Iss 1, Pp 83-90 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/6ff442a68ff747acb070aaea120fc1b7 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5090404112 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9604-8591 |
| authorships[0].author.display_name | Ei Ei Tun |
| authorships[0].countries | TH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I158708052 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Chulalongkorn University, Bangkok 10330, Thailand |
| authorships[0].institutions[0].id | https://openalex.org/I158708052 |
| authorships[0].institutions[0].ror | https://ror.org/028wp3y58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I158708052 |
| authorships[0].institutions[0].country_code | TH |
| authorships[0].institutions[0].display_name | Chulalongkorn University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ei Ei Tun |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering, Chulalongkorn University, Bangkok 10330, Thailand |
| authorships[1].author.id | https://openalex.org/A5069698375 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9840-3171 |
| authorships[1].author.display_name | Supavadee Aramvith |
| authorships[1].countries | TH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I158708052 |
| authorships[1].affiliations[0].raw_affiliation_string | Multimedia Data Analytics and Processing Research Unit, Department of Electrical Engineering, Chulalongkorn University, Bangkok 10330, Thailand |
| authorships[1].institutions[0].id | https://openalex.org/I158708052 |
| authorships[1].institutions[0].ror | https://ror.org/028wp3y58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I158708052 |
| authorships[1].institutions[0].country_code | TH |
| authorships[1].institutions[0].display_name | Chulalongkorn University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Supavadee Aramvith |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Multimedia Data Analytics and Processing Research Unit, Department of Electrical Engineering, Chulalongkorn University, Bangkok 10330, Thailand |
| authorships[2].author.id | https://openalex.org/A5061693379 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1894-2448 |
| authorships[2].author.display_name | Takao Onoye |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I98285908 |
| authorships[2].affiliations[0].raw_affiliation_string | Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I98285908 |
| authorships[2].institutions[0].ror | https://ror.org/035t8zc32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I98285908 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | The University of Osaka |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Takao Onoye |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.icte.2021.08.018 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Low complexity mode selection for H.266/VVC intra coding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10741 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Video Coding and Compression Technologies |
| related_works | https://openalex.org/W3009161491, https://openalex.org/W2018760684, https://openalex.org/W2380956331, https://openalex.org/W2116936728, https://openalex.org/W2806397197, https://openalex.org/W2986238322, https://openalex.org/W1992296783, https://openalex.org/W2460818705, https://openalex.org/W2391322781, https://openalex.org/W2594233795 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.icte.2021.08.018 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898368220 |
| best_oa_location.source.issn | 2405-9595 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2405-9595 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ICT Express |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ICT Express |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.icte.2021.08.018 |
| primary_location.id | doi:10.1016/j.icte.2021.08.018 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898368220 |
| primary_location.source.issn | 2405-9595 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2405-9595 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ICT Express |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICT Express |
| primary_location.landing_page_url | https://doi.org/10.1016/j.icte.2021.08.018 |
| publication_date | 2021-08-28 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2146395539, https://openalex.org/W2043101517, https://openalex.org/W6629758610, https://openalex.org/W2033582143, https://openalex.org/W2337292434, https://openalex.org/W2513169612, https://openalex.org/W2723482394, https://openalex.org/W2293792336, https://openalex.org/W2610325777, https://openalex.org/W6760066971, https://openalex.org/W3037841842, https://openalex.org/W2921369765, https://openalex.org/W1500016432 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 79, 86, 153, 167, 193 |
| abstract_inverted_index.32 | 40 |
| abstract_inverted_index.In | 98 |
| abstract_inverted_index.RD | 132, 180 |
| abstract_inverted_index.an | 147, 222 |
| abstract_inverted_index.as | 39 |
| abstract_inverted_index.by | 18, 165 |
| abstract_inverted_index.in | 22, 68, 82 |
| abstract_inverted_index.of | 25, 34, 62, 92, 106, 118, 124, 134, 187, 213, 217 |
| abstract_inverted_index.on | 142, 172, 210 |
| abstract_inverted_index.to | 20, 197, 207 |
| abstract_inverted_index.up | 19, 206 |
| abstract_inverted_index.we | 101, 151 |
| abstract_inverted_index.5.0 | 220 |
| abstract_inverted_index.50% | 21 |
| abstract_inverted_index.RDO | 163 |
| abstract_inverted_index.The | 0, 28, 72 |
| abstract_inverted_index.VTM | 218 |
| abstract_inverted_index.VVC | 64, 93, 107 |
| abstract_inverted_index.and | 50, 111, 130, 176, 209 |
| abstract_inverted_index.can | 204 |
| abstract_inverted_index.for | 44, 159, 182 |
| abstract_inverted_index.its | 11 |
| abstract_inverted_index.our | 201 |
| abstract_inverted_index.set | 170, 191 |
| abstract_inverted_index.sum | 117 |
| abstract_inverted_index.the | 23, 32, 59, 63, 103, 113, 116, 125, 131, 135, 143, 160, 173, 178, 188, 198, 214 |
| abstract_inverted_index.(RD) | 90 |
| abstract_inverted_index.High | 13 |
| abstract_inverted_index.SATD | 174 |
| abstract_inverted_index.Test | 65 |
| abstract_inverted_index.cost | 61 |
| abstract_inverted_index.fast | 74, 154 |
| abstract_inverted_index.from | 31 |
| abstract_inverted_index.mode | 109, 127, 157 |
| abstract_inverted_index.most | 161 |
| abstract_inverted_index.only | 183 |
| abstract_inverted_index.plus | 94 |
| abstract_inverted_index.rate | 88, 136 |
| abstract_inverted_index.such | 38 |
| abstract_inverted_index.this | 99 |
| abstract_inverted_index.time | 84 |
| abstract_inverted_index.with | 85, 146, 221 |
| abstract_inverted_index.(RDO) | 139 |
| abstract_inverted_index.(RMD) | 129 |
| abstract_inverted_index.(VTM) | 67 |
| abstract_inverted_index.Based | 141 |
| abstract_inverted_index.Model | 66 |
| abstract_inverted_index.Video | 7, 15 |
| abstract_inverted_index.among | 115 |
| abstract_inverted_index.based | 171 |
| abstract_inverted_index.costs | 123, 133, 175, 181 |
| abstract_inverted_index.intra | 45, 75, 108, 155, 184 |
| abstract_inverted_index.modes | 43, 186 |
| abstract_inverted_index.rough | 126 |
| abstract_inverted_index.small | 168, 189 |
| abstract_inverted_index.study | 102 |
| abstract_inverted_index.these | 55 |
| abstract_inverted_index.tools | 37, 56 |
| abstract_inverted_index.video | 2 |
| abstract_inverted_index.(HEVC) | 17 |
| abstract_inverted_index.(SATD) | 122 |
| abstract_inverted_index.21.07% | 212 |
| abstract_inverted_index.27.38% | 208 |
| abstract_inverted_index.Coding | 8, 16 |
| abstract_inverted_index.called | 5 |
| abstract_inverted_index.coding | 26, 76 |
| abstract_inverted_index.matter | 24 |
| abstract_inverted_index.newest | 1 |
| abstract_inverted_index.paper, | 100 |
| abstract_inverted_index.reduce | 205 |
| abstract_inverted_index.saving | 81 |
| abstract_inverted_index.system | 203 |
| abstract_inverted_index.useful | 144 |
| abstract_inverted_index.achieve | 78 |
| abstract_inverted_index.analyze | 112 |
| abstract_inverted_index.angular | 42 |
| abstract_inverted_index.average | 211 |
| abstract_inverted_index.coding, | 46 |
| abstract_inverted_index.deliver | 58 |
| abstract_inverted_index.process | 164 |
| abstract_inverted_index.propose | 152 |
| abstract_inverted_index.quality | 224 |
| abstract_inverted_index.results | 30 |
| abstract_inverted_index.several | 35 |
| abstract_inverted_index.version | 219 |
| abstract_inverted_index.without | 192 |
| abstract_inverted_index.However, | 54 |
| abstract_inverted_index.absolute | 119 |
| abstract_inverted_index.advanced | 47 |
| abstract_inverted_index.decision | 110, 128 |
| abstract_inverted_index.encoding | 70 |
| abstract_inverted_index.existing | 73 |
| abstract_inverted_index.extended | 41 |
| abstract_inverted_index.original | 104 |
| abstract_inverted_index.proposed | 202 |
| abstract_inverted_index.results, | 200 |
| abstract_inverted_index.strategy | 105 |
| abstract_inverted_index.According | 196 |
| abstract_inverted_index.Versatile | 6 |
| abstract_inverted_index.all-intra | 69 |
| abstract_inverted_index.candidate | 169, 190 |
| abstract_inverted_index.effective | 148 |
| abstract_inverted_index.overhead. | 195 |
| abstract_inverted_index.selecting | 166 |
| abstract_inverted_index.selection | 158 |
| abstract_inverted_index.standard, | 4 |
| abstract_inverted_index.threshold | 149 |
| abstract_inverted_index.transform | 52 |
| abstract_inverted_index.Efficiency | 14 |
| abstract_inverted_index.additional | 51, 95 |
| abstract_inverted_index.algorithms | 77 |
| abstract_inverted_index.comparable | 87 |
| abstract_inverted_index.complexity | 216 |
| abstract_inverted_index.distortion | 89, 137 |
| abstract_inverted_index.negatively | 57 |
| abstract_inverted_index.prediction | 156, 185 |
| abstract_inverted_index.processes. | 140 |
| abstract_inverted_index.selection. | 53 |
| abstract_inverted_index.structure, | 49 |
| abstract_inverted_index.achievement | 29 |
| abstract_inverted_index.calculating | 177 |
| abstract_inverted_index.complexity. | 97 |
| abstract_inverted_index.compression | 3 |
| abstract_inverted_index.computation | 215 |
| abstract_inverted_index.correlation | 114 |
| abstract_inverted_index.differences | 121 |
| abstract_inverted_index.integrating | 33 |
| abstract_inverted_index.outperforms | 10 |
| abstract_inverted_index.performance | 91 |
| abstract_inverted_index.predecessor | 12 |
| abstract_inverted_index.significant | 80, 194 |
| abstract_inverted_index.transformed | 120 |
| abstract_inverted_index.(H.266/VVC), | 9 |
| abstract_inverted_index.correlations | 145 |
| abstract_inverted_index.degradation. | 225 |
| abstract_inverted_index.experimental | 199 |
| abstract_inverted_index.formulation, | 150 |
| abstract_inverted_index.optimization | 138 |
| abstract_inverted_index.partitioning | 48 |
| abstract_inverted_index.performance. | 27 |
| abstract_inverted_index.computational | 60, 83, 96 |
| abstract_inverted_index.insignificant | 223 |
| abstract_inverted_index.sophisticated | 36 |
| abstract_inverted_index.configuration. | 71 |
| abstract_inverted_index.time-consuming | 162, 179 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5069698375 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I158708052 |
| citation_normalized_percentile.value | 0.86534033 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |