Low-Cost Resource Scheduling Framework using Collaborative Edge Fog Environment for Smart Health Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.22541/au.169164909.95409973/v1
The exponential growth in data processing and resource requirements directly results from the widespread use of smart health applications. Fog computing emerges as a viable paradigm, bringing cloud capabilities to the network’s edge to meet the high computational needs. In this research, we present a low-cost resource scheduling technique for smart health systems that use collaborative edge fog computing to enhance efficiency and maximize the allocation of available resources. The proposed framework uses the network’s edge nodes to distribute computing and storage tasks, which decreases latency, increases scalability, and lowers infrastructure costs. Our resource allocation system dynamically assigns tasks to fog devices and servers based on job priorities, device capabilities, and resource consumption levels. This optimization guarantees consistent workload distribution, resilience in the face of errors, and swift, accurate processing of smart health data. The experimental evaluation verifies the framework’s efficiency in minimizing response times and optimizing resource utilization, a major step forward in smart health. Our Low-Cost Resource Scheduling Framework for Smart Health in a Collaborative Edge Fog Environment enables healthcare providers to provide timely and affordable care. The framework uses edge devices and fog servers to process health-related data closer to data sources and end-users to improve system performance and reduce transmission latency. The framework improves service quality and reduces expenses by decreasing the need for cloud hosting. Edge fog computing’s near-real-time data processing benefits users and patients, strengthening the framework’s smart health application.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.22541/au.169164909.95409973/v1
- https://www.authorea.com/doi/pdf/10.22541/au.169164909.95409973
- OA Status
- gold
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385721356
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385721356Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22541/au.169164909.95409973/v1Digital Object Identifier
- Title
-
Low-Cost Resource Scheduling Framework using Collaborative Edge Fog Environment for Smart HealthWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-10Full publication date if available
- Authors
-
Kiran Deep Singh, Prabhdeep SinghList of authors in order
- Landing page
-
https://doi.org/10.22541/au.169164909.95409973/v1Publisher landing page
- PDF URL
-
https://www.authorea.com/doi/pdf/10.22541/au.169164909.95409973Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.authorea.com/doi/pdf/10.22541/au.169164909.95409973Direct OA link when available
- Concepts
-
Computer science, Cloud computing, Edge device, Edge computing, Server, Scalability, Scheduling (production processes), Distributed computing, Computer network, Database, Engineering, Operating system, Operations managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385721356 |
|---|---|
| doi | https://doi.org/10.22541/au.169164909.95409973/v1 |
| ids.doi | https://doi.org/10.22541/au.169164909.95409973/v1 |
| ids.openalex | https://openalex.org/W4385721356 |
| fwci | 0.0 |
| type | preprint |
| title | Low-Cost Resource Scheduling Framework using Collaborative Edge Fog Environment for Smart Health |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | IoT and Edge/Fog Computing |
| topics[1].id | https://openalex.org/T10444 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9828000068664551 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Context-Aware Activity Recognition Systems |
| topics[2].id | https://openalex.org/T12079 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9635000228881836 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | IoT Networks and Protocols |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7324733138084412 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C79974875 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6316797137260437 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[1].display_name | Cloud computing |
| concepts[2].id | https://openalex.org/C138236772 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5796690583229065 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q25098575 |
| concepts[2].display_name | Edge device |
| concepts[3].id | https://openalex.org/C2778456923 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5778548121452332 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[3].display_name | Edge computing |
| concepts[4].id | https://openalex.org/C93996380 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5643022656440735 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q44127 |
| concepts[4].display_name | Server |
| concepts[5].id | https://openalex.org/C48044578 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5124107003211975 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[5].display_name | Scalability |
| concepts[6].id | https://openalex.org/C206729178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.510553240776062 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[6].display_name | Scheduling (production processes) |
| concepts[7].id | https://openalex.org/C120314980 |
| concepts[7].level | 1 |
| concepts[7].score | 0.48920488357543945 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[7].display_name | Distributed computing |
| concepts[8].id | https://openalex.org/C31258907 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3710770010948181 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[8].display_name | Computer network |
| concepts[9].id | https://openalex.org/C77088390 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1906876266002655 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[9].display_name | Database |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1269407570362091 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.11171495914459229 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C21547014 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[12].display_name | Operations management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7324733138084412 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/cloud-computing |
| keywords[1].score | 0.6316797137260437 |
| keywords[1].display_name | Cloud computing |
| keywords[2].id | https://openalex.org/keywords/edge-device |
| keywords[2].score | 0.5796690583229065 |
| keywords[2].display_name | Edge device |
| keywords[3].id | https://openalex.org/keywords/edge-computing |
| keywords[3].score | 0.5778548121452332 |
| keywords[3].display_name | Edge computing |
| keywords[4].id | https://openalex.org/keywords/server |
| keywords[4].score | 0.5643022656440735 |
| keywords[4].display_name | Server |
| keywords[5].id | https://openalex.org/keywords/scalability |
| keywords[5].score | 0.5124107003211975 |
| keywords[5].display_name | Scalability |
| keywords[6].id | https://openalex.org/keywords/scheduling |
| keywords[6].score | 0.510553240776062 |
| keywords[6].display_name | Scheduling (production processes) |
| keywords[7].id | https://openalex.org/keywords/distributed-computing |
| keywords[7].score | 0.48920488357543945 |
| keywords[7].display_name | Distributed computing |
| keywords[8].id | https://openalex.org/keywords/computer-network |
| keywords[8].score | 0.3710770010948181 |
| keywords[8].display_name | Computer network |
| keywords[9].id | https://openalex.org/keywords/database |
| keywords[9].score | 0.1906876266002655 |
| keywords[9].display_name | Database |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.1269407570362091 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/operating-system |
| keywords[11].score | 0.11171495914459229 |
| keywords[11].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.22541/au.169164909.95409973/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.authorea.com/doi/pdf/10.22541/au.169164909.95409973 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.22541/au.169164909.95409973/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5015006569 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8154-0986 |
| authorships[0].author.display_name | Kiran Deep Singh |
| authorships[0].countries | IN, NP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[0].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210129773, https://openalex.org/I74319210 |
| authorships[0].affiliations[1].raw_affiliation_string | Chitkara Institute of Engineering and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I74319210 |
| authorships[0].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Chitkara University |
| authorships[0].institutions[1].id | https://openalex.org/I4210129773 |
| authorships[0].institutions[1].ror | https://ror.org/03ny67e60 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I155028946, https://openalex.org/I4210129773 |
| authorships[0].institutions[1].country_code | NP |
| authorships[0].institutions[1].display_name | Institute of Engineering |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kiran Deep Singh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Chitkara Institute of Engineering and Technology, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India |
| authorships[1].author.id | https://openalex.org/A5066742463 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7632-2271 |
| authorships[1].author.display_name | Prabhdeep Singh |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I60054993 |
| authorships[1].affiliations[0].raw_affiliation_string | Graphic Era Deemed to be University |
| authorships[1].institutions[0].id | https://openalex.org/I60054993 |
| authorships[1].institutions[0].ror | https://ror.org/03wqgqd89 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I60054993 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Graphic Era University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Prabh Deep Singh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Graphic Era Deemed to be University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.authorea.com/doi/pdf/10.22541/au.169164909.95409973 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Low-Cost Resource Scheduling Framework using Collaborative Edge Fog Environment for Smart Health |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | IoT and Edge/Fog Computing |
| related_works | https://openalex.org/W3154796165, https://openalex.org/W3189674571, https://openalex.org/W4322761281, https://openalex.org/W4238233472, https://openalex.org/W3111395152, https://openalex.org/W4313526662, https://openalex.org/W4313463218, https://openalex.org/W3106131444, https://openalex.org/W3216099748, https://openalex.org/W4205963435 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.22541/au.169164909.95409973/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.authorea.com/doi/pdf/10.22541/au.169164909.95409973 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.22541/au.169164909.95409973/v1 |
| primary_location.id | doi:10.22541/au.169164909.95409973/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.authorea.com/doi/pdf/10.22541/au.169164909.95409973 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.22541/au.169164909.95409973/v1 |
| publication_date | 2023-08-10 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3005324762, https://openalex.org/W6801244854, https://openalex.org/W3006372726, https://openalex.org/W4322487615, https://openalex.org/W2995686323, https://openalex.org/W4362720850, https://openalex.org/W2809114637, https://openalex.org/W3214436788, https://openalex.org/W4382319218, https://openalex.org/W2783764628, https://openalex.org/W3038004684, https://openalex.org/W3198475160 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 23, 44, 149, 165 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.as | 22 |
| abstract_inverted_index.by | 213 |
| abstract_inverted_index.in | 3, 121, 141, 153, 164 |
| abstract_inverted_index.of | 15, 66, 124, 130 |
| abstract_inverted_index.on | 105 |
| abstract_inverted_index.to | 29, 33, 59, 77, 99, 173, 187, 192, 197 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.Fog | 19, 168 |
| abstract_inverted_index.Our | 92, 156 |
| abstract_inverted_index.The | 0, 69, 134, 179, 205 |
| abstract_inverted_index.and | 6, 62, 80, 88, 102, 110, 126, 145, 176, 184, 195, 201, 210, 228 |
| abstract_inverted_index.fog | 57, 100, 185, 221 |
| abstract_inverted_index.for | 49, 161, 217 |
| abstract_inverted_index.job | 106 |
| abstract_inverted_index.the | 12, 30, 35, 64, 73, 122, 138, 215, 231 |
| abstract_inverted_index.use | 14, 54 |
| abstract_inverted_index.Edge | 167, 220 |
| abstract_inverted_index.This | 114 |
| abstract_inverted_index.data | 4, 190, 193, 224 |
| abstract_inverted_index.edge | 32, 56, 75, 182 |
| abstract_inverted_index.face | 123 |
| abstract_inverted_index.from | 11 |
| abstract_inverted_index.high | 36 |
| abstract_inverted_index.meet | 34 |
| abstract_inverted_index.need | 216 |
| abstract_inverted_index.step | 151 |
| abstract_inverted_index.that | 53 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.uses | 72, 181 |
| abstract_inverted_index.Smart | 162 |
| abstract_inverted_index.based | 104 |
| abstract_inverted_index.care. | 178 |
| abstract_inverted_index.cloud | 27, 218 |
| abstract_inverted_index.data. | 133 |
| abstract_inverted_index.major | 150 |
| abstract_inverted_index.nodes | 76 |
| abstract_inverted_index.smart | 16, 50, 131, 154, 233 |
| abstract_inverted_index.tasks | 98 |
| abstract_inverted_index.times | 144 |
| abstract_inverted_index.users | 227 |
| abstract_inverted_index.which | 83 |
| abstract_inverted_index.Health | 163 |
| abstract_inverted_index.closer | 191 |
| abstract_inverted_index.costs. | 91 |
| abstract_inverted_index.device | 108 |
| abstract_inverted_index.growth | 2 |
| abstract_inverted_index.health | 17, 51, 132, 234 |
| abstract_inverted_index.lowers | 89 |
| abstract_inverted_index.needs. | 38 |
| abstract_inverted_index.reduce | 202 |
| abstract_inverted_index.swift, | 127 |
| abstract_inverted_index.system | 95, 199 |
| abstract_inverted_index.tasks, | 82 |
| abstract_inverted_index.timely | 175 |
| abstract_inverted_index.viable | 24 |
| abstract_inverted_index.assigns | 97 |
| abstract_inverted_index.devices | 101, 183 |
| abstract_inverted_index.emerges | 21 |
| abstract_inverted_index.enables | 170 |
| abstract_inverted_index.enhance | 60 |
| abstract_inverted_index.errors, | 125 |
| abstract_inverted_index.forward | 152 |
| abstract_inverted_index.health. | 155 |
| abstract_inverted_index.improve | 198 |
| abstract_inverted_index.levels. | 113 |
| abstract_inverted_index.present | 43 |
| abstract_inverted_index.process | 188 |
| abstract_inverted_index.provide | 174 |
| abstract_inverted_index.quality | 209 |
| abstract_inverted_index.reduces | 211 |
| abstract_inverted_index.results | 10 |
| abstract_inverted_index.servers | 103, 186 |
| abstract_inverted_index.service | 208 |
| abstract_inverted_index.sources | 194 |
| abstract_inverted_index.storage | 81 |
| abstract_inverted_index.systems | 52 |
| abstract_inverted_index.Low-Cost | 157 |
| abstract_inverted_index.Resource | 158 |
| abstract_inverted_index.accurate | 128 |
| abstract_inverted_index.benefits | 226 |
| abstract_inverted_index.bringing | 26 |
| abstract_inverted_index.directly | 9 |
| abstract_inverted_index.expenses | 212 |
| abstract_inverted_index.hosting. | 219 |
| abstract_inverted_index.improves | 207 |
| abstract_inverted_index.latency, | 85 |
| abstract_inverted_index.latency. | 204 |
| abstract_inverted_index.low-cost | 45 |
| abstract_inverted_index.maximize | 63 |
| abstract_inverted_index.proposed | 70 |
| abstract_inverted_index.resource | 7, 46, 93, 111, 147 |
| abstract_inverted_index.response | 143 |
| abstract_inverted_index.verifies | 137 |
| abstract_inverted_index.workload | 118 |
| abstract_inverted_index.Framework | 160 |
| abstract_inverted_index.available | 67 |
| abstract_inverted_index.computing | 20, 58, 79 |
| abstract_inverted_index.decreases | 84 |
| abstract_inverted_index.end-users | 196 |
| abstract_inverted_index.framework | 71, 180, 206 |
| abstract_inverted_index.increases | 86 |
| abstract_inverted_index.paradigm, | 25 |
| abstract_inverted_index.patients, | 229 |
| abstract_inverted_index.providers | 172 |
| abstract_inverted_index.research, | 41 |
| abstract_inverted_index.technique | 48 |
| abstract_inverted_index.Scheduling | 159 |
| abstract_inverted_index.affordable | 177 |
| abstract_inverted_index.allocation | 65, 94 |
| abstract_inverted_index.consistent | 117 |
| abstract_inverted_index.decreasing | 214 |
| abstract_inverted_index.distribute | 78 |
| abstract_inverted_index.efficiency | 61, 140 |
| abstract_inverted_index.evaluation | 136 |
| abstract_inverted_index.guarantees | 116 |
| abstract_inverted_index.healthcare | 171 |
| abstract_inverted_index.minimizing | 142 |
| abstract_inverted_index.optimizing | 146 |
| abstract_inverted_index.processing | 5, 129, 225 |
| abstract_inverted_index.resilience | 120 |
| abstract_inverted_index.resources. | 68 |
| abstract_inverted_index.scheduling | 47 |
| abstract_inverted_index.widespread | 13 |
| abstract_inverted_index.Environment | 169 |
| abstract_inverted_index.consumption | 112 |
| abstract_inverted_index.dynamically | 96 |
| abstract_inverted_index.exponential | 1 |
| abstract_inverted_index.network’s | 31, 74 |
| abstract_inverted_index.performance | 200 |
| abstract_inverted_index.priorities, | 107 |
| abstract_inverted_index.application. | 235 |
| abstract_inverted_index.capabilities | 28 |
| abstract_inverted_index.experimental | 135 |
| abstract_inverted_index.optimization | 115 |
| abstract_inverted_index.requirements | 8 |
| abstract_inverted_index.scalability, | 87 |
| abstract_inverted_index.transmission | 203 |
| abstract_inverted_index.utilization, | 148 |
| abstract_inverted_index.Collaborative | 166 |
| abstract_inverted_index.applications. | 18 |
| abstract_inverted_index.capabilities, | 109 |
| abstract_inverted_index.collaborative | 55 |
| abstract_inverted_index.computational | 37 |
| abstract_inverted_index.computing’s | 222 |
| abstract_inverted_index.distribution, | 119 |
| abstract_inverted_index.framework’s | 139, 232 |
| abstract_inverted_index.strengthening | 230 |
| abstract_inverted_index.health-related | 189 |
| abstract_inverted_index.infrastructure | 90 |
| abstract_inverted_index.near-real-time | 223 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.12372387 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |