Low-count PET image reconstruction based on truncated inverse radon layer and U-shaped network Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1088/1361-6560/ace240
Objective. Positron emission tomography (PET) is a functional imaging widely used in various applications such as tumour detection. PET image reconstruction is an ill-posed inverse problem, and the model-based iterative reconstruction methods commonly used in clinical practice have disadvantages such as long time consumption and low signal-to-noise ratio, especially at low doses. Approach. In this study, we propose a deep learning-based reconstruction method that is capable of reconstructing images directly from low-count sinograms. Our network consists of two parts, a truncated inverse radon layer for implementing domain transform and a U-shaped network for image enhancement. Main result. We validated our method on both simulation data and real data. Compared to ordered subset expectation maximization with a post-Guassian filter, the structural similarity can be improved from 0.9357 to 0.9613 and the peak signal-to-noise ratio can be improved by 5 dB. Significance. The proposed method can directly convert low-count sinograms into PET images, while obtaining improved image quality and having less time consumption than iterative reconstruction algorithms and the state-of-the-art convolutional neural network.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1361-6560/ace240
- OA Status
- hybrid
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382199181
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382199181Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1361-6560/ace240Digital Object Identifier
- Title
-
Low-count PET image reconstruction based on truncated inverse radon layer and U-shaped networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-27Full publication date if available
- Authors
-
Jianbo Ye, Zhonghua Kuang, Yongfeng Yang, Ke Cui, Xiangyu LiList of authors in order
- Landing page
-
https://doi.org/10.1088/1361-6560/ace240Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1361-6560/ace240Direct OA link when available
- Concepts
-
Iterative reconstruction, Computer science, Convolutional neural network, Image quality, Peak signal-to-noise ratio, Radon transform, Similarity (geometry), Artificial intelligence, Algorithm, Noise (video), Expectation–maximization algorithm, Projection (relational algebra), Signal-to-noise ratio (imaging), Noise reduction, Filter (signal processing), Iterative method, Deep learning, Inverse, Image (mathematics), Computer vision, Mathematics, Statistics, Maximum likelihood, Telecommunications, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382199181 |
|---|---|
| doi | https://doi.org/10.1088/1361-6560/ace240 |
| ids.doi | https://doi.org/10.1088/1361-6560/ace240 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37369236 |
| ids.openalex | https://openalex.org/W4382199181 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D007091 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Image Processing, Computer-Assisted |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D049268 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Positron-Emission Tomography |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000465 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Algorithms |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D014057 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Tomography, X-Ray Computed |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D019047 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Phantoms, Imaging |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D007091 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Image Processing, Computer-Assisted |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D049268 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Positron-Emission Tomography |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000465 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Algorithms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D016571 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Neural Networks, Computer |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D014057 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Tomography, X-Ray Computed |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D019047 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Phantoms, Imaging |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D007091 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Image Processing, Computer-Assisted |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D049268 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Positron-Emission Tomography |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000465 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Algorithms |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D016571 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Neural Networks, Computer |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D014057 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Tomography, X-Ray Computed |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D019047 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Phantoms, Imaging |
| type | article |
| title | Low-count PET image reconstruction based on truncated inverse radon layer and U-shaped network |
| biblio.issue | 15 |
| biblio.volume | 68 |
| biblio.last_page | 155004 |
| biblio.first_page | 155004 |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10378 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced MRI Techniques and Applications |
| topics[2].id | https://openalex.org/T11216 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9973000288009644 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3108 |
| topics[2].subfield.display_name | Radiation |
| topics[2].display_name | Radiation Detection and Scintillator Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C141379421 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7421984672546387 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[0].display_name | Iterative reconstruction |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6410248279571533 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6189479827880859 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C55020928 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5749809741973877 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[3].display_name | Image quality |
| concepts[4].id | https://openalex.org/C154579607 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5401204824447632 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3373850 |
| concepts[4].display_name | Peak signal-to-noise ratio |
| concepts[5].id | https://openalex.org/C197231052 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5368090271949768 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q979829 |
| concepts[5].display_name | Radon transform |
| concepts[6].id | https://openalex.org/C103278499 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5311229228973389 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[6].display_name | Similarity (geometry) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5165049433708191 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5003600120544434 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C99498987 |
| concepts[9].level | 3 |
| concepts[9].score | 0.48657429218292236 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[9].display_name | Noise (video) |
| concepts[10].id | https://openalex.org/C182081679 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4581737518310547 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1275153 |
| concepts[10].display_name | Expectation–maximization algorithm |
| concepts[11].id | https://openalex.org/C57493831 |
| concepts[11].level | 2 |
| concepts[11].score | 0.44862204790115356 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[11].display_name | Projection (relational algebra) |
| concepts[12].id | https://openalex.org/C13944312 |
| concepts[12].level | 2 |
| concepts[12].score | 0.44724220037460327 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7512748 |
| concepts[12].display_name | Signal-to-noise ratio (imaging) |
| concepts[13].id | https://openalex.org/C163294075 |
| concepts[13].level | 2 |
| concepts[13].score | 0.43994495272636414 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[13].display_name | Noise reduction |
| concepts[14].id | https://openalex.org/C106131492 |
| concepts[14].level | 2 |
| concepts[14].score | 0.43163707852363586 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[14].display_name | Filter (signal processing) |
| concepts[15].id | https://openalex.org/C159694833 |
| concepts[15].level | 2 |
| concepts[15].score | 0.41723138093948364 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2321565 |
| concepts[15].display_name | Iterative method |
| concepts[16].id | https://openalex.org/C108583219 |
| concepts[16].level | 2 |
| concepts[16].score | 0.41502249240875244 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[16].display_name | Deep learning |
| concepts[17].id | https://openalex.org/C207467116 |
| concepts[17].level | 2 |
| concepts[17].score | 0.41434401273727417 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q4385666 |
| concepts[17].display_name | Inverse |
| concepts[18].id | https://openalex.org/C115961682 |
| concepts[18].level | 2 |
| concepts[18].score | 0.37641626596450806 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[18].display_name | Image (mathematics) |
| concepts[19].id | https://openalex.org/C31972630 |
| concepts[19].level | 1 |
| concepts[19].score | 0.357820600271225 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[19].display_name | Computer vision |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.2585202753543854 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C105795698 |
| concepts[21].level | 1 |
| concepts[21].score | 0.09875300526618958 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[21].display_name | Statistics |
| concepts[22].id | https://openalex.org/C49781872 |
| concepts[22].level | 2 |
| concepts[22].score | 0.09577003121376038 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1045555 |
| concepts[22].display_name | Maximum likelihood |
| concepts[23].id | https://openalex.org/C76155785 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[23].display_name | Telecommunications |
| concepts[24].id | https://openalex.org/C2524010 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[24].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[0].score | 0.7421984672546387 |
| keywords[0].display_name | Iterative reconstruction |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6410248279571533 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6189479827880859 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/image-quality |
| keywords[3].score | 0.5749809741973877 |
| keywords[3].display_name | Image quality |
| keywords[4].id | https://openalex.org/keywords/peak-signal-to-noise-ratio |
| keywords[4].score | 0.5401204824447632 |
| keywords[4].display_name | Peak signal-to-noise ratio |
| keywords[5].id | https://openalex.org/keywords/radon-transform |
| keywords[5].score | 0.5368090271949768 |
| keywords[5].display_name | Radon transform |
| keywords[6].id | https://openalex.org/keywords/similarity |
| keywords[6].score | 0.5311229228973389 |
| keywords[6].display_name | Similarity (geometry) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5165049433708191 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.5003600120544434 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/noise |
| keywords[9].score | 0.48657429218292236 |
| keywords[9].display_name | Noise (video) |
| keywords[10].id | https://openalex.org/keywords/expectation–maximization-algorithm |
| keywords[10].score | 0.4581737518310547 |
| keywords[10].display_name | Expectation–maximization algorithm |
| keywords[11].id | https://openalex.org/keywords/projection |
| keywords[11].score | 0.44862204790115356 |
| keywords[11].display_name | Projection (relational algebra) |
| keywords[12].id | https://openalex.org/keywords/signal-to-noise-ratio |
| keywords[12].score | 0.44724220037460327 |
| keywords[12].display_name | Signal-to-noise ratio (imaging) |
| keywords[13].id | https://openalex.org/keywords/noise-reduction |
| keywords[13].score | 0.43994495272636414 |
| keywords[13].display_name | Noise reduction |
| keywords[14].id | https://openalex.org/keywords/filter |
| keywords[14].score | 0.43163707852363586 |
| keywords[14].display_name | Filter (signal processing) |
| keywords[15].id | https://openalex.org/keywords/iterative-method |
| keywords[15].score | 0.41723138093948364 |
| keywords[15].display_name | Iterative method |
| keywords[16].id | https://openalex.org/keywords/deep-learning |
| keywords[16].score | 0.41502249240875244 |
| keywords[16].display_name | Deep learning |
| keywords[17].id | https://openalex.org/keywords/inverse |
| keywords[17].score | 0.41434401273727417 |
| keywords[17].display_name | Inverse |
| keywords[18].id | https://openalex.org/keywords/image |
| keywords[18].score | 0.37641626596450806 |
| keywords[18].display_name | Image (mathematics) |
| keywords[19].id | https://openalex.org/keywords/computer-vision |
| keywords[19].score | 0.357820600271225 |
| keywords[19].display_name | Computer vision |
| keywords[20].id | https://openalex.org/keywords/mathematics |
| keywords[20].score | 0.2585202753543854 |
| keywords[20].display_name | Mathematics |
| keywords[21].id | https://openalex.org/keywords/statistics |
| keywords[21].score | 0.09875300526618958 |
| keywords[21].display_name | Statistics |
| keywords[22].id | https://openalex.org/keywords/maximum-likelihood |
| keywords[22].score | 0.09577003121376038 |
| keywords[22].display_name | Maximum likelihood |
| language | en |
| locations[0].id | doi:10.1088/1361-6560/ace240 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S20241394 |
| locations[0].source.issn | 0031-9155, 1361-6560 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0031-9155 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Physics in Medicine and Biology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Physics in Medicine & Biology |
| locations[0].landing_page_url | https://doi.org/10.1088/1361-6560/ace240 |
| locations[1].id | pmid:37369236 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Physics in medicine and biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37369236 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5101612001 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-4990-3098 |
| authorships[0].author.display_name | Jianbo Ye |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[0].affiliations[0].raw_affiliation_string | the School of Electronic and Optical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei, Nanjing, Jiangsu, 210094, CHINA |
| authorships[0].institutions[0].id | https://openalex.org/I36399199 |
| authorships[0].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianbo Ye |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | the School of Electronic and Optical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei, Nanjing, Jiangsu, 210094, CHINA |
| authorships[1].author.id | https://openalex.org/A5009561884 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6848-1635 |
| authorships[1].author.display_name | Zhonghua Kuang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3131625388, https://openalex.org/I4210145761 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, 1068 Xueyuan Boulevard, University Town of Shenzhen,Xili Nanshan, Shenzhen, China., Shenzhen, Guangdong, 518055, CHINA |
| authorships[1].institutions[0].id | https://openalex.org/I4210145761 |
| authorships[1].institutions[0].ror | https://ror.org/04gh4er46 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[1].institutions[1].id | https://openalex.org/I3131625388 |
| authorships[1].institutions[1].ror | https://ror.org/05f5j6225 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I3131625388 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | University Town of Shenzhen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhonghua Kuang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, 1068 Xueyuan Boulevard, University Town of Shenzhen,Xili Nanshan, Shenzhen, China., Shenzhen, Guangdong, 518055, CHINA |
| authorships[2].author.id | https://openalex.org/A5101999024 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1642-6631 |
| authorships[2].author.display_name | Yongfeng Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210145761 |
| authorships[2].affiliations[0].raw_affiliation_string | Shenzhen Institutes of Advanced Technology, No.1068 Xueyuan Blvd, Shenzhen, Guangdong, 518055, CHINA |
| authorships[2].institutions[0].id | https://openalex.org/I4210145761 |
| authorships[2].institutions[0].ror | https://ror.org/04gh4er46 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yongfeng Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shenzhen Institutes of Advanced Technology, No.1068 Xueyuan Blvd, Shenzhen, Guangdong, 518055, CHINA |
| authorships[3].author.id | https://openalex.org/A5001799310 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3699-5949 |
| authorships[3].author.display_name | Ke Cui |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[3].affiliations[0].raw_affiliation_string | the school of Electronic and Optical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei, Nanjing, 210094, CHINA |
| authorships[3].institutions[0].id | https://openalex.org/I36399199 |
| authorships[3].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ke Cui |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | the school of Electronic and Optical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei, Nanjing, 210094, CHINA |
| authorships[4].author.id | https://openalex.org/A5101529910 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7681-7787 |
| authorships[4].author.display_name | Xiangyu Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei, Nanjing, 210094, CHINA |
| authorships[4].institutions[0].id | https://openalex.org/I36399199 |
| authorships[4].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xiangyu Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science and Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei, Nanjing, 210094, CHINA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1361-6560/ace240 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Low-count PET image reconstruction based on truncated inverse radon layer and U-shaped network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W4231936369, https://openalex.org/W967573802, https://openalex.org/W3103782609, https://openalex.org/W2466075600, https://openalex.org/W2811038336, https://openalex.org/W4366975566, https://openalex.org/W2079352884, https://openalex.org/W2128367053, https://openalex.org/W1551815774, https://openalex.org/W2045818635 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1088/1361-6560/ace240 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S20241394 |
| best_oa_location.source.issn | 0031-9155, 1361-6560 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0031-9155 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Physics in Medicine and Biology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Physics in Medicine & Biology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1361-6560/ace240 |
| primary_location.id | doi:10.1088/1361-6560/ace240 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S20241394 |
| primary_location.source.issn | 0031-9155, 1361-6560 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0031-9155 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Physics in Medicine and Biology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Physics in Medicine & Biology |
| primary_location.landing_page_url | https://doi.org/10.1088/1361-6560/ace240 |
| publication_date | 2023-06-27 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2584483805, https://openalex.org/W2964297772, https://openalex.org/W3016100956, https://openalex.org/W6677644275, https://openalex.org/W2918247176, https://openalex.org/W2798538010, https://openalex.org/W3027600659, https://openalex.org/W2154744699, https://openalex.org/W2895811110, https://openalex.org/W3206362227, https://openalex.org/W3094496086, https://openalex.org/W4200181155, https://openalex.org/W2994140308, https://openalex.org/W6766978945, https://openalex.org/W1993388378, https://openalex.org/W1901129140, https://openalex.org/W2069629287, https://openalex.org/W2476548250, https://openalex.org/W2080500950, https://openalex.org/W3092370246, https://openalex.org/W3216975766, https://openalex.org/W3008292561, https://openalex.org/W3109862379, https://openalex.org/W4220657713, https://openalex.org/W3031778801, https://openalex.org/W2562637781, https://openalex.org/W2611467245, https://openalex.org/W2119674653, https://openalex.org/W4295312788 |
| referenced_works_count | 29 |
| abstract_inverted_index.5 | 138 |
| abstract_inverted_index.a | 7, 59, 80, 90, 116 |
| abstract_inverted_index.In | 54 |
| abstract_inverted_index.We | 98 |
| abstract_inverted_index.an | 23 |
| abstract_inverted_index.as | 16, 41 |
| abstract_inverted_index.at | 50 |
| abstract_inverted_index.be | 123, 135 |
| abstract_inverted_index.by | 137 |
| abstract_inverted_index.in | 12, 35 |
| abstract_inverted_index.is | 6, 22, 65 |
| abstract_inverted_index.of | 67, 77 |
| abstract_inverted_index.on | 102 |
| abstract_inverted_index.to | 110, 127 |
| abstract_inverted_index.we | 57 |
| abstract_inverted_index.Our | 74 |
| abstract_inverted_index.PET | 19, 150 |
| abstract_inverted_index.The | 141 |
| abstract_inverted_index.and | 27, 45, 89, 106, 129, 157, 166 |
| abstract_inverted_index.can | 122, 134, 144 |
| abstract_inverted_index.dB. | 139 |
| abstract_inverted_index.for | 85, 93 |
| abstract_inverted_index.low | 46, 51 |
| abstract_inverted_index.our | 100 |
| abstract_inverted_index.the | 28, 119, 130, 167 |
| abstract_inverted_index.two | 78 |
| abstract_inverted_index.Main | 96 |
| abstract_inverted_index.both | 103 |
| abstract_inverted_index.data | 105 |
| abstract_inverted_index.deep | 60 |
| abstract_inverted_index.from | 71, 125 |
| abstract_inverted_index.have | 38 |
| abstract_inverted_index.into | 149 |
| abstract_inverted_index.less | 159 |
| abstract_inverted_index.long | 42 |
| abstract_inverted_index.peak | 131 |
| abstract_inverted_index.real | 107 |
| abstract_inverted_index.such | 15, 40 |
| abstract_inverted_index.than | 162 |
| abstract_inverted_index.that | 64 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.time | 43, 160 |
| abstract_inverted_index.used | 11, 34 |
| abstract_inverted_index.with | 115 |
| abstract_inverted_index.(PET) | 5 |
| abstract_inverted_index.data. | 108 |
| abstract_inverted_index.image | 20, 94, 155 |
| abstract_inverted_index.layer | 84 |
| abstract_inverted_index.radon | 83 |
| abstract_inverted_index.ratio | 133 |
| abstract_inverted_index.while | 152 |
| abstract_inverted_index.0.9357 | 126 |
| abstract_inverted_index.0.9613 | 128 |
| abstract_inverted_index.domain | 87 |
| abstract_inverted_index.doses. | 52 |
| abstract_inverted_index.having | 158 |
| abstract_inverted_index.images | 69 |
| abstract_inverted_index.method | 63, 101, 143 |
| abstract_inverted_index.neural | 170 |
| abstract_inverted_index.parts, | 79 |
| abstract_inverted_index.ratio, | 48 |
| abstract_inverted_index.study, | 56 |
| abstract_inverted_index.subset | 112 |
| abstract_inverted_index.tumour | 17 |
| abstract_inverted_index.widely | 10 |
| abstract_inverted_index.capable | 66 |
| abstract_inverted_index.convert | 146 |
| abstract_inverted_index.filter, | 118 |
| abstract_inverted_index.images, | 151 |
| abstract_inverted_index.imaging | 9 |
| abstract_inverted_index.inverse | 25, 82 |
| abstract_inverted_index.methods | 32 |
| abstract_inverted_index.network | 75, 92 |
| abstract_inverted_index.ordered | 111 |
| abstract_inverted_index.propose | 58 |
| abstract_inverted_index.quality | 156 |
| abstract_inverted_index.result. | 97 |
| abstract_inverted_index.various | 13 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Compared | 109 |
| abstract_inverted_index.Positron | 2 |
| abstract_inverted_index.U-shaped | 91 |
| abstract_inverted_index.clinical | 36 |
| abstract_inverted_index.commonly | 33 |
| abstract_inverted_index.consists | 76 |
| abstract_inverted_index.directly | 70, 145 |
| abstract_inverted_index.emission | 3 |
| abstract_inverted_index.improved | 124, 136, 154 |
| abstract_inverted_index.network. | 171 |
| abstract_inverted_index.practice | 37 |
| abstract_inverted_index.problem, | 26 |
| abstract_inverted_index.proposed | 142 |
| abstract_inverted_index.Approach. | 53 |
| abstract_inverted_index.ill-posed | 24 |
| abstract_inverted_index.iterative | 30, 163 |
| abstract_inverted_index.low-count | 72, 147 |
| abstract_inverted_index.obtaining | 153 |
| abstract_inverted_index.sinograms | 148 |
| abstract_inverted_index.transform | 88 |
| abstract_inverted_index.truncated | 81 |
| abstract_inverted_index.validated | 99 |
| abstract_inverted_index.Objective. | 1 |
| abstract_inverted_index.algorithms | 165 |
| abstract_inverted_index.detection. | 18 |
| abstract_inverted_index.especially | 49 |
| abstract_inverted_index.functional | 8 |
| abstract_inverted_index.similarity | 121 |
| abstract_inverted_index.simulation | 104 |
| abstract_inverted_index.sinograms. | 73 |
| abstract_inverted_index.structural | 120 |
| abstract_inverted_index.tomography | 4 |
| abstract_inverted_index.consumption | 44, 161 |
| abstract_inverted_index.expectation | 113 |
| abstract_inverted_index.model-based | 29 |
| abstract_inverted_index.applications | 14 |
| abstract_inverted_index.enhancement. | 95 |
| abstract_inverted_index.implementing | 86 |
| abstract_inverted_index.maximization | 114 |
| abstract_inverted_index.Significance. | 140 |
| abstract_inverted_index.convolutional | 169 |
| abstract_inverted_index.disadvantages | 39 |
| abstract_inverted_index.post-Guassian | 117 |
| abstract_inverted_index.learning-based | 61 |
| abstract_inverted_index.reconstructing | 68 |
| abstract_inverted_index.reconstruction | 21, 31, 62, 164 |
| abstract_inverted_index.signal-to-noise | 47, 132 |
| abstract_inverted_index.state-of-the-art | 168 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5001799310 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I36399199 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.20592313 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |