Low-dose CT denoising with convolutional neural network Article Swipe
Hu Chen
,
Yi Zhang
,
Weihua Zhang
,
Peixi Liao
,
Ke Li
,
Jiliu Zhou
,
Ge Wang
·
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1610.00321
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1610.00321
To reduce the potential radiation risk, low-dose CT has attracted much attention. However, simply lowering the radiation dose will lead to significant deterioration of the image quality. In this paper, we propose a noise reduction method for low-dose CT via deep neural network without accessing original projection data. A deep convolutional neural network is trained to transform low-dose CT images towards normal-dose CT images, patch by patch. Visual and quantitative evaluation demonstrates a competing performance of the proposed method.
Related Topics
Concepts
Convolutional neural network
Noise reduction
Artificial intelligence
Computer science
Radiation dose
Image quality
Projection (relational algebra)
Noise (video)
Pattern recognition (psychology)
Image denoising
Reduction (mathematics)
Artificial neural network
Computer vision
Image (mathematics)
Nuclear medicine
Medicine
Mathematics
Algorithm
Geometry
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1610.00321
- https://arxiv.org/pdf/1610.00321
- OA Status
- green
- Cited By
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2953230602
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2953230602Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1610.00321Digital Object Identifier
- Title
-
Low-dose CT denoising with convolutional neural networkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-10-02Full publication date if available
- Authors
-
Hu Chen, Yi Zhang, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, Ge WangList of authors in order
- Landing page
-
https://arxiv.org/abs/1610.00321Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1610.00321Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1610.00321Direct OA link when available
- Concepts
-
Convolutional neural network, Noise reduction, Artificial intelligence, Computer science, Radiation dose, Image quality, Projection (relational algebra), Noise (video), Pattern recognition (psychology), Image denoising, Reduction (mathematics), Artificial neural network, Computer vision, Image (mathematics), Nuclear medicine, Medicine, Mathematics, Algorithm, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 2, 2019: 3, 2018: 1, 2017: 1, 2016: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2953230602 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1610.00321 |
| ids.doi | https://doi.org/10.48550/arxiv.1610.00321 |
| ids.mag | 2953230602 |
| ids.openalex | https://openalex.org/W2953230602 |
| fwci | |
| type | preprint |
| title | Low-dose CT denoising with convolutional neural network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9898999929428101 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8406805992126465 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C163294075 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6756818294525146 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[1].display_name | Noise reduction |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6611328125 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6279890537261963 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2987700449 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5825884342193604 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q186161 |
| concepts[4].display_name | Radiation dose |
| concepts[5].id | https://openalex.org/C55020928 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5402649641036987 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[5].display_name | Image quality |
| concepts[6].id | https://openalex.org/C57493831 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5197572112083435 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[6].display_name | Projection (relational algebra) |
| concepts[7].id | https://openalex.org/C99498987 |
| concepts[7].level | 3 |
| concepts[7].score | 0.48284822702407837 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[7].display_name | Noise (video) |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4641408324241638 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C2983327147 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4638715982437134 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[9].display_name | Image denoising |
| concepts[10].id | https://openalex.org/C111335779 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45785582065582275 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[10].display_name | Reduction (mathematics) |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.44908708333969116 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.40821871161460876 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3676178753376007 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C2989005 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3479645550251007 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[14].display_name | Nuclear medicine |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.22285571694374084 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.16580352187156677 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C11413529 |
| concepts[17].level | 1 |
| concepts[17].score | 0.14469313621520996 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[17].display_name | Algorithm |
| concepts[18].id | https://openalex.org/C2524010 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[18].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8406805992126465 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/noise-reduction |
| keywords[1].score | 0.6756818294525146 |
| keywords[1].display_name | Noise reduction |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6611328125 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6279890537261963 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/radiation-dose |
| keywords[4].score | 0.5825884342193604 |
| keywords[4].display_name | Radiation dose |
| keywords[5].id | https://openalex.org/keywords/image-quality |
| keywords[5].score | 0.5402649641036987 |
| keywords[5].display_name | Image quality |
| keywords[6].id | https://openalex.org/keywords/projection |
| keywords[6].score | 0.5197572112083435 |
| keywords[6].display_name | Projection (relational algebra) |
| keywords[7].id | https://openalex.org/keywords/noise |
| keywords[7].score | 0.48284822702407837 |
| keywords[7].display_name | Noise (video) |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.4641408324241638 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/image-denoising |
| keywords[9].score | 0.4638715982437134 |
| keywords[9].display_name | Image denoising |
| keywords[10].id | https://openalex.org/keywords/reduction |
| keywords[10].score | 0.45785582065582275 |
| keywords[10].display_name | Reduction (mathematics) |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.44908708333969116 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.40821871161460876 |
| keywords[12].display_name | Computer vision |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.3676178753376007 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[14].score | 0.3479645550251007 |
| keywords[14].display_name | Nuclear medicine |
| keywords[15].id | https://openalex.org/keywords/medicine |
| keywords[15].score | 0.22285571694374084 |
| keywords[15].display_name | Medicine |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.16580352187156677 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/algorithm |
| keywords[17].score | 0.14469313621520996 |
| keywords[17].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1610.00321 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1610.00321 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1610.00321 |
| locations[1].id | doi:10.48550/arxiv.1610.00321 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1610.00321 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100357677 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9300-6572 |
| authorships[0].author.display_name | Hu Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[0].institutions[0].id | https://openalex.org/I24185976 |
| authorships[0].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sichuan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hu Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[1].author.id | https://openalex.org/A5100388053 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7201-2092 |
| authorships[1].author.display_name | Yi Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[1].institutions[0].id | https://openalex.org/I24185976 |
| authorships[1].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sichuan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yi Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[2].author.id | https://openalex.org/A5100370302 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8686-1597 |
| authorships[2].author.display_name | Weihua Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[2].institutions[0].id | https://openalex.org/I24185976 |
| authorships[2].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sichuan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Weihua Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[3].author.id | https://openalex.org/A5028095460 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2796-6687 |
| authorships[3].author.display_name | Peixi Liao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210158494 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Scientific Research and Education, The Sixth People's Hospital of Chengdu, 610065, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210158494 |
| authorships[3].institutions[0].ror | https://ror.org/0524grj14 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210158494 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | The Sixth People's Hospital of Shenyang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Peixi Liao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Scientific Research and Education, The Sixth People's Hospital of Chengdu, 610065, China |
| authorships[4].author.id | https://openalex.org/A5100343505 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6496-6643 |
| authorships[4].author.display_name | Ke Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[4].institutions[0].id | https://openalex.org/I24185976 |
| authorships[4].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Sichuan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ke Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[5].author.id | https://openalex.org/A5102009027 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6864-9509 |
| authorships[5].author.display_name | Jiliu Zhou |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[5].institutions[0].id | https://openalex.org/I24185976 |
| authorships[5].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Sichuan University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jiliu Zhou |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[6].author.id | https://openalex.org/A5100400458 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2656-7705 |
| authorships[6].author.display_name | Ge Wang |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I165799507 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering Rensselaer Polytechnic Institute Troy NY 12180 USA |
| authorships[6].institutions[0].id | https://openalex.org/I165799507 |
| authorships[6].institutions[0].ror | https://ror.org/01rtyzb94 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I165799507 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Rensselaer Polytechnic Institute |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ge Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Biomedical Engineering Rensselaer Polytechnic Institute Troy NY 12180 USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1610.00321 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Low-dose CT denoising with convolutional neural network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W2895947835, https://openalex.org/W2087258800, https://openalex.org/W2810018092, https://openalex.org/W2387428419, https://openalex.org/W2255488609, https://openalex.org/W2098237619, https://openalex.org/W2046848596, https://openalex.org/W1974034585, https://openalex.org/W2353444452, https://openalex.org/W2001438600 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2018 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2017 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2016 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1610.00321 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1610.00321 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1610.00321 |
| primary_location.id | pmh:oai:arXiv.org:1610.00321 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1610.00321 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1610.00321 |
| publication_date | 2016-10-02 |
| publication_year | 2016 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 48 |
| abstract_inverted_index.a | 32, 72 |
| abstract_inverted_index.CT | 7, 38, 58, 62 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.by | 65 |
| abstract_inverted_index.is | 53 |
| abstract_inverted_index.of | 23, 75 |
| abstract_inverted_index.to | 20, 55 |
| abstract_inverted_index.we | 30 |
| abstract_inverted_index.and | 68 |
| abstract_inverted_index.for | 36 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.the | 2, 15, 24, 76 |
| abstract_inverted_index.via | 39 |
| abstract_inverted_index.deep | 40, 49 |
| abstract_inverted_index.dose | 17 |
| abstract_inverted_index.lead | 19 |
| abstract_inverted_index.much | 10 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.will | 18 |
| abstract_inverted_index.data. | 47 |
| abstract_inverted_index.image | 25 |
| abstract_inverted_index.noise | 33 |
| abstract_inverted_index.patch | 64 |
| abstract_inverted_index.risk, | 5 |
| abstract_inverted_index.Visual | 67 |
| abstract_inverted_index.images | 59 |
| abstract_inverted_index.method | 35 |
| abstract_inverted_index.neural | 41, 51 |
| abstract_inverted_index.paper, | 29 |
| abstract_inverted_index.patch. | 66 |
| abstract_inverted_index.reduce | 1 |
| abstract_inverted_index.simply | 13 |
| abstract_inverted_index.images, | 63 |
| abstract_inverted_index.method. | 78 |
| abstract_inverted_index.network | 42, 52 |
| abstract_inverted_index.propose | 31 |
| abstract_inverted_index.towards | 60 |
| abstract_inverted_index.trained | 54 |
| abstract_inverted_index.without | 43 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.low-dose | 6, 37, 57 |
| abstract_inverted_index.lowering | 14 |
| abstract_inverted_index.original | 45 |
| abstract_inverted_index.proposed | 77 |
| abstract_inverted_index.quality. | 26 |
| abstract_inverted_index.accessing | 44 |
| abstract_inverted_index.attracted | 9 |
| abstract_inverted_index.competing | 73 |
| abstract_inverted_index.potential | 3 |
| abstract_inverted_index.radiation | 4, 16 |
| abstract_inverted_index.reduction | 34 |
| abstract_inverted_index.transform | 56 |
| abstract_inverted_index.attention. | 11 |
| abstract_inverted_index.evaluation | 70 |
| abstract_inverted_index.projection | 46 |
| abstract_inverted_index.normal-dose | 61 |
| abstract_inverted_index.performance | 74 |
| abstract_inverted_index.significant | 21 |
| abstract_inverted_index.demonstrates | 71 |
| abstract_inverted_index.quantitative | 69 |
| abstract_inverted_index.convolutional | 50 |
| abstract_inverted_index.deterioration | 22 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |