Low Power Unsupervised Anomaly Detection by Non-Parametric Modeling of\n Sensor Statistics Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2003.10088
This work presents AEGIS, a novel mixed-signal framework for real-time\nanomaly detection by examining sensor stream statistics. AEGIS utilizes Kernel\nDensity Estimation (KDE)-based non-parametric density estimation to generate a\nreal-time statistical model of the sensor data stream. The likelihood estimate\nof the sensor data point can be obtained based on the generated statistical\nmodel to detect outliers. We present CMOS Gilbert Gaussian cell-based design to\nrealize Gaussian kernels for KDE. For outlier detection, the decision boundary\nis defined in terms of kernel standard deviation ($\\sigma_{Kernel}$) and\nlikelihood threshold ($P_{Thres}$). We adopt a sliding window to update the\ndetection model in real-time. We use time-series dataset provided from Yahoo to\nbenchmark the performance of AEGIS. A f1-score higher than 0.87 is achieved by\noptimizing parameters such as length of the sliding window and decision\nthresholds which are programmable in AEGIS. Discussed architecture is designed\nusing 45nm technology node and our approach on average consumes $\\sim$75 $\\mu$W\npower at a sampling rate of 2 MHz while using ten recent inlier samples for\ndensity estimation. \\textcolor{red}{Full-version of this research has been\npublished at IEEE TVLSI}\n
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2003.10088
- https://arxiv.org/pdf/2003.10088
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287824466
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287824466Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2003.10088Digital Object Identifier
- Title
-
Low Power Unsupervised Anomaly Detection by Non-Parametric Modeling of\n Sensor StatisticsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-23Full publication date if available
- Authors
-
Ahish Shylendra, Priyesh Shukla, Saibal Mukhopadhyay, Swarup Bhunia, Amit Ranjan TrivediList of authors in order
- Landing page
-
https://arxiv.org/abs/2003.10088Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2003.10088Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2003.10088Direct OA link when available
- Concepts
-
Anomaly detection, Kernel density estimation, Outlier, Computer science, Sliding window protocol, Kernel (algebra), Benchmark (surveying), Gaussian, Parametric statistics, Artificial intelligence, Algorithm, Statistics, Window (computing), Mathematics, Geodesy, Combinatorics, Physics, Operating system, Estimator, Geography, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287824466 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2003.10088 |
| ids.openalex | https://openalex.org/W4287824466 |
| fwci | 0.0 |
| type | preprint |
| title | Low Power Unsupervised Anomaly Detection by Non-Parametric Modeling of\n Sensor Statistics |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| topics[2].id | https://openalex.org/T12879 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9868000149726868 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Distributed Sensor Networks and Detection Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C739882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7948627471923828 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[0].display_name | Anomaly detection |
| concepts[1].id | https://openalex.org/C71134354 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6518504619598389 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q458825 |
| concepts[1].display_name | Kernel density estimation |
| concepts[2].id | https://openalex.org/C79337645 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5846051573753357 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[2].display_name | Outlier |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5805239081382751 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C102392041 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5338619351387024 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q592860 |
| concepts[4].display_name | Sliding window protocol |
| concepts[5].id | https://openalex.org/C74193536 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5335415601730347 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[5].display_name | Kernel (algebra) |
| concepts[6].id | https://openalex.org/C185798385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4505999684333801 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[6].display_name | Benchmark (surveying) |
| concepts[7].id | https://openalex.org/C163716315 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43972527980804443 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[7].display_name | Gaussian |
| concepts[8].id | https://openalex.org/C117251300 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43333151936531067 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[8].display_name | Parametric statistics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3299289345741272 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3221593499183655 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.30666735768318176 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C2778751112 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2548261284828186 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q835016 |
| concepts[12].display_name | Window (computing) |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.24749261140823364 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| concepts[15].id | https://openalex.org/C114614502 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[15].display_name | Combinatorics |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C185429906 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[18].display_name | Estimator |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/anomaly-detection |
| keywords[0].score | 0.7948627471923828 |
| keywords[0].display_name | Anomaly detection |
| keywords[1].id | https://openalex.org/keywords/kernel-density-estimation |
| keywords[1].score | 0.6518504619598389 |
| keywords[1].display_name | Kernel density estimation |
| keywords[2].id | https://openalex.org/keywords/outlier |
| keywords[2].score | 0.5846051573753357 |
| keywords[2].display_name | Outlier |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5805239081382751 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/sliding-window-protocol |
| keywords[4].score | 0.5338619351387024 |
| keywords[4].display_name | Sliding window protocol |
| keywords[5].id | https://openalex.org/keywords/kernel |
| keywords[5].score | 0.5335415601730347 |
| keywords[5].display_name | Kernel (algebra) |
| keywords[6].id | https://openalex.org/keywords/benchmark |
| keywords[6].score | 0.4505999684333801 |
| keywords[6].display_name | Benchmark (surveying) |
| keywords[7].id | https://openalex.org/keywords/gaussian |
| keywords[7].score | 0.43972527980804443 |
| keywords[7].display_name | Gaussian |
| keywords[8].id | https://openalex.org/keywords/parametric-statistics |
| keywords[8].score | 0.43333151936531067 |
| keywords[8].display_name | Parametric statistics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3299289345741272 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.3221593499183655 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.30666735768318176 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/window |
| keywords[12].score | 0.2548261284828186 |
| keywords[12].display_name | Window (computing) |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.24749261140823364 |
| keywords[13].display_name | Mathematics |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2003.10088 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2003.10088 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2003.10088 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5013872413 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2388-0453 |
| authorships[0].author.display_name | Ahish Shylendra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shylendra, Ahish |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067601336 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9868-8944 |
| authorships[1].author.display_name | Priyesh Shukla |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shukla, Priyesh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009591041 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8894-3390 |
| authorships[2].author.display_name | Saibal Mukhopadhyay |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mukhopadhyay, Saibal |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5039442844 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6082-6961 |
| authorships[3].author.display_name | Swarup Bhunia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bhunia, Swarup |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5028132107 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5436-7922 |
| authorships[4].author.display_name | Amit Ranjan Trivedi |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Trivedi, Amit Ranjan |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2003.10088 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-26T00:00:00 |
| display_name | Low Power Unsupervised Anomaly Detection by Non-Parametric Modeling of\n Sensor Statistics |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2499612753, https://openalex.org/W3111802945, https://openalex.org/W2946096271, https://openalex.org/W2295423552, https://openalex.org/W3107369729, https://openalex.org/W3005992387, https://openalex.org/W205872183, https://openalex.org/W2122407924, https://openalex.org/W2799907871, https://openalex.org/W2406935090 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2003.10088 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2003.10088 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2003.10088 |
| primary_location.id | pmh:oai:arXiv.org:2003.10088 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2003.10088 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2003.10088 |
| publication_date | 2020-03-23 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 147 |
| abstract_inverted_index.A | 104 |
| abstract_inverted_index.a | 4, 83, 143 |
| abstract_inverted_index.We | 52, 81, 92 |
| abstract_inverted_index.as | 114 |
| abstract_inverted_index.at | 142, 163 |
| abstract_inverted_index.be | 42 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.in | 71, 90, 125 |
| abstract_inverted_index.is | 109, 129 |
| abstract_inverted_index.of | 29, 73, 102, 116, 146, 158 |
| abstract_inverted_index.on | 45, 137 |
| abstract_inverted_index.to | 24, 49, 86 |
| abstract_inverted_index.For | 64 |
| abstract_inverted_index.MHz | 148 |
| abstract_inverted_index.The | 34 |
| abstract_inverted_index.and | 120, 134 |
| abstract_inverted_index.are | 123 |
| abstract_inverted_index.can | 41 |
| abstract_inverted_index.for | 8, 62 |
| abstract_inverted_index.has | 161 |
| abstract_inverted_index.our | 135 |
| abstract_inverted_index.ten | 151 |
| abstract_inverted_index.the | 30, 37, 46, 67, 100, 117 |
| abstract_inverted_index.use | 93 |
| abstract_inverted_index.0.87 | 108 |
| abstract_inverted_index.45nm | 131 |
| abstract_inverted_index.CMOS | 54 |
| abstract_inverted_index.IEEE | 164 |
| abstract_inverted_index.KDE. | 63 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 32, 39 |
| abstract_inverted_index.from | 97 |
| abstract_inverted_index.node | 133 |
| abstract_inverted_index.rate | 145 |
| abstract_inverted_index.such | 113 |
| abstract_inverted_index.than | 107 |
| abstract_inverted_index.this | 159 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.AEGIS | 16 |
| abstract_inverted_index.Yahoo | 98 |
| abstract_inverted_index.adopt | 82 |
| abstract_inverted_index.based | 44 |
| abstract_inverted_index.model | 28, 89 |
| abstract_inverted_index.novel | 5 |
| abstract_inverted_index.point | 40 |
| abstract_inverted_index.terms | 72 |
| abstract_inverted_index.using | 150 |
| abstract_inverted_index.which | 122 |
| abstract_inverted_index.while | 149 |
| abstract_inverted_index.AEGIS, | 3 |
| abstract_inverted_index.AEGIS. | 103, 126 |
| abstract_inverted_index.design | 58 |
| abstract_inverted_index.detect | 50 |
| abstract_inverted_index.higher | 106 |
| abstract_inverted_index.inlier | 153 |
| abstract_inverted_index.kernel | 74 |
| abstract_inverted_index.length | 115 |
| abstract_inverted_index.recent | 152 |
| abstract_inverted_index.sensor | 13, 31, 38 |
| abstract_inverted_index.stream | 14 |
| abstract_inverted_index.update | 87 |
| abstract_inverted_index.window | 85, 119 |
| abstract_inverted_index.Gilbert | 55 |
| abstract_inverted_index.average | 138 |
| abstract_inverted_index.dataset | 95 |
| abstract_inverted_index.defined | 70 |
| abstract_inverted_index.density | 22 |
| abstract_inverted_index.kernels | 61 |
| abstract_inverted_index.outlier | 65 |
| abstract_inverted_index.present | 53 |
| abstract_inverted_index.samples | 154 |
| abstract_inverted_index.sliding | 84, 118 |
| abstract_inverted_index.stream. | 33 |
| abstract_inverted_index.Gaussian | 56, 60 |
| abstract_inverted_index.TVLSI}\n | 165 |
| abstract_inverted_index.achieved | 110 |
| abstract_inverted_index.approach | 136 |
| abstract_inverted_index.consumes | 139 |
| abstract_inverted_index.decision | 68 |
| abstract_inverted_index.f1-score | 105 |
| abstract_inverted_index.generate | 25 |
| abstract_inverted_index.obtained | 43 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.provided | 96 |
| abstract_inverted_index.research | 160 |
| abstract_inverted_index.sampling | 144 |
| abstract_inverted_index.standard | 75 |
| abstract_inverted_index.utilizes | 17 |
| abstract_inverted_index.$\\sim$75 | 140 |
| abstract_inverted_index.Discussed | 127 |
| abstract_inverted_index.detection | 10 |
| abstract_inverted_index.deviation | 76 |
| abstract_inverted_index.examining | 12 |
| abstract_inverted_index.framework | 7 |
| abstract_inverted_index.generated | 47 |
| abstract_inverted_index.outliers. | 51 |
| abstract_inverted_index.threshold | 79 |
| abstract_inverted_index.Estimation | 19 |
| abstract_inverted_index.cell-based | 57 |
| abstract_inverted_index.detection, | 66 |
| abstract_inverted_index.estimation | 23 |
| abstract_inverted_index.likelihood | 35 |
| abstract_inverted_index.parameters | 112 |
| abstract_inverted_index.real-time. | 91 |
| abstract_inverted_index.technology | 132 |
| abstract_inverted_index.(KDE)-based | 20 |
| abstract_inverted_index.estimation. | 156 |
| abstract_inverted_index.performance | 101 |
| abstract_inverted_index.statistical | 27 |
| abstract_inverted_index.statistics. | 15 |
| abstract_inverted_index.time-series | 94 |
| abstract_inverted_index.to\nrealize | 59 |
| abstract_inverted_index.a\nreal-time | 26 |
| abstract_inverted_index.architecture | 128 |
| abstract_inverted_index.boundary\nis | 69 |
| abstract_inverted_index.estimate\nof | 36 |
| abstract_inverted_index.for\ndensity | 155 |
| abstract_inverted_index.mixed-signal | 6 |
| abstract_inverted_index.programmable | 124 |
| abstract_inverted_index.to\nbenchmark | 99 |
| abstract_inverted_index.$\\mu$W\npower | 141 |
| abstract_inverted_index.($P_{Thres}$). | 80 |
| abstract_inverted_index.by\noptimizing | 111 |
| abstract_inverted_index.non-parametric | 21 |
| abstract_inverted_index.the\ndetection | 88 |
| abstract_inverted_index.Kernel\nDensity | 18 |
| abstract_inverted_index.and\nlikelihood | 78 |
| abstract_inverted_index.been\npublished | 162 |
| abstract_inverted_index.designed\nusing | 130 |
| abstract_inverted_index.real-time\nanomaly | 9 |
| abstract_inverted_index.statistical\nmodel | 48 |
| abstract_inverted_index.($\\sigma_{Kernel}$) | 77 |
| abstract_inverted_index.decision\nthresholds | 121 |
| abstract_inverted_index.\\textcolor{red}{Full-version | 157 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.298612 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |