Low Resource Summarization using Pre-trained Language Models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.02790
With the advent of Deep Learning based Artificial Neural Networks models, Natural Language Processing (NLP) has witnessed significant improvements in textual data processing in terms of its efficiency and accuracy. However, the research is mostly restricted to high-resource languages such as English and low-resource languages still suffer from a lack of available resources in terms of training datasets as well as models with even baseline evaluation results. Considering the limited availability of resources for low-resource languages, we propose a methodology for adapting self-attentive transformer-based architecture models (mBERT, mT5) for low-resource summarization, supplemented by the construction of a new baseline dataset (76.5k article, summary pairs) in a low-resource language Urdu. Choosing news (a publicly available source) as the application domain has the potential to make the proposed methodology useful for reproducing in other languages with limited resources. Our adapted summarization model \textit{urT5} with up to 44.78\% reduction in size as compared to \textit{mT5} can capture contextual information of low resource language effectively with evaluation score (up to 46.35 ROUGE-1, 77 BERTScore) at par with state-of-the-art models in high resource language English \textit{(PEGASUS: 47.21, BART: 45.14 on XSUM Dataset)}. The proposed method provided a baseline approach towards extractive as well as abstractive summarization with competitive evaluation results in a limited resource setup.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.02790
- https://arxiv.org/pdf/2310.02790
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387390155
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387390155Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.02790Digital Object Identifier
- Title
-
Low Resource Summarization using Pre-trained Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-04Full publication date if available
- Authors
-
Mubashir Munaf, Hammad Afzal, Naima Iltaf, Khawir MahmoodList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.02790Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.02790Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.02790Direct OA link when available
- Concepts
-
Automatic summarization, Computer science, Baseline (sea), Natural language processing, Artificial intelligence, Transformer, Resource (disambiguation), Architecture, Machine learning, Geography, Engineering, Geology, Oceanography, Voltage, Computer network, Archaeology, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387390155 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.02790 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.02790 |
| ids.openalex | https://openalex.org/W4387390155 |
| fwci | |
| type | preprint |
| title | Low Resource Summarization using Pre-trained Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9912999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T13910 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9065999984741211 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3300 |
| topics[2].subfield.display_name | General Social Sciences |
| topics[2].display_name | Computational and Text Analysis Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C170858558 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9367916584014893 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1394144 |
| concepts[0].display_name | Automatic summarization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7806092500686646 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C12725497 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7502001523971558 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q810247 |
| concepts[2].display_name | Baseline (sea) |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5924026966094971 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5692802667617798 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C66322947 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4487239718437195 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[5].display_name | Transformer |
| concepts[6].id | https://openalex.org/C206345919 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44104987382888794 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[6].display_name | Resource (disambiguation) |
| concepts[7].id | https://openalex.org/C123657996 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4139944016933441 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[7].display_name | Architecture |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33783966302871704 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0871649980545044 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.06418126821517944 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C111368507 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[12].display_name | Oceanography |
| concepts[13].id | https://openalex.org/C165801399 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[13].display_name | Voltage |
| concepts[14].id | https://openalex.org/C31258907 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[14].display_name | Computer network |
| concepts[15].id | https://openalex.org/C166957645 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[15].display_name | Archaeology |
| concepts[16].id | https://openalex.org/C119599485 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[16].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/automatic-summarization |
| keywords[0].score | 0.9367916584014893 |
| keywords[0].display_name | Automatic summarization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7806092500686646 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/baseline |
| keywords[2].score | 0.7502001523971558 |
| keywords[2].display_name | Baseline (sea) |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.5924026966094971 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5692802667617798 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/transformer |
| keywords[5].score | 0.4487239718437195 |
| keywords[5].display_name | Transformer |
| keywords[6].id | https://openalex.org/keywords/resource |
| keywords[6].score | 0.44104987382888794 |
| keywords[6].display_name | Resource (disambiguation) |
| keywords[7].id | https://openalex.org/keywords/architecture |
| keywords[7].score | 0.4139944016933441 |
| keywords[7].display_name | Architecture |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.33783966302871704 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.0871649980545044 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.06418126821517944 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.02790 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.02790 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.02790 |
| locations[1].id | doi:10.48550/arxiv.2310.02790 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.02790 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5093013881 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-2938-3590 |
| authorships[0].author.display_name | Mubashir Munaf |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Munaf, Mubashir |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009591817 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9583-5585 |
| authorships[1].author.display_name | Hammad Afzal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Afzal, Hammad |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5065396147 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5392-5187 |
| authorships[2].author.display_name | Naima Iltaf |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Iltaf, Naima |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5080797161 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9377-6945 |
| authorships[3].author.display_name | Khawir Mahmood |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mahmood, Khawir |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.02790 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Low Resource Summarization using Pre-trained Language Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2366403280, https://openalex.org/W1495108544, https://openalex.org/W2091301346, https://openalex.org/W3148229873, https://openalex.org/W2150160875, https://openalex.org/W4242223894, https://openalex.org/W1517524280, https://openalex.org/W4323520239, https://openalex.org/W4317547544, https://openalex.org/W4313395829 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.02790 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.02790 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.02790 |
| primary_location.id | pmh:oai:arXiv.org:2310.02790 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.02790 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.02790 |
| publication_date | 2023-10-04 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 48, 78, 96, 105, 191, 206 |
| abstract_inverted_index.(a | 111 |
| abstract_inverted_index.77 | 168 |
| abstract_inverted_index.as | 40, 58, 60, 115, 148, 196, 198 |
| abstract_inverted_index.at | 170 |
| abstract_inverted_index.by | 92 |
| abstract_inverted_index.in | 19, 23, 53, 104, 130, 146, 175, 205 |
| abstract_inverted_index.is | 33 |
| abstract_inverted_index.of | 3, 25, 50, 55, 71, 95, 156 |
| abstract_inverted_index.on | 184 |
| abstract_inverted_index.to | 36, 122, 143, 150, 165 |
| abstract_inverted_index.up | 142 |
| abstract_inverted_index.we | 76 |
| abstract_inverted_index.(up | 164 |
| abstract_inverted_index.Our | 136 |
| abstract_inverted_index.The | 187 |
| abstract_inverted_index.and | 28, 42 |
| abstract_inverted_index.can | 152 |
| abstract_inverted_index.for | 73, 80, 88, 128 |
| abstract_inverted_index.has | 15, 119 |
| abstract_inverted_index.its | 26 |
| abstract_inverted_index.low | 157 |
| abstract_inverted_index.new | 97 |
| abstract_inverted_index.par | 171 |
| abstract_inverted_index.the | 1, 31, 68, 93, 116, 120, 124 |
| abstract_inverted_index.Deep | 4 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.XSUM | 185 |
| abstract_inverted_index.data | 21 |
| abstract_inverted_index.even | 63 |
| abstract_inverted_index.from | 47 |
| abstract_inverted_index.high | 176 |
| abstract_inverted_index.lack | 49 |
| abstract_inverted_index.mT5) | 87 |
| abstract_inverted_index.make | 123 |
| abstract_inverted_index.news | 110 |
| abstract_inverted_index.size | 147 |
| abstract_inverted_index.such | 39 |
| abstract_inverted_index.well | 59, 197 |
| abstract_inverted_index.with | 62, 133, 141, 161, 172, 201 |
| abstract_inverted_index.(NLP) | 14 |
| abstract_inverted_index.45.14 | 183 |
| abstract_inverted_index.46.35 | 166 |
| abstract_inverted_index.BART: | 182 |
| abstract_inverted_index.Urdu. | 108 |
| abstract_inverted_index.based | 6 |
| abstract_inverted_index.model | 139 |
| abstract_inverted_index.other | 131 |
| abstract_inverted_index.score | 163 |
| abstract_inverted_index.still | 45 |
| abstract_inverted_index.terms | 24, 54 |
| abstract_inverted_index.(76.5k | 100 |
| abstract_inverted_index.47.21, | 181 |
| abstract_inverted_index.Neural | 8 |
| abstract_inverted_index.advent | 2 |
| abstract_inverted_index.domain | 118 |
| abstract_inverted_index.method | 189 |
| abstract_inverted_index.models | 61, 85, 174 |
| abstract_inverted_index.mostly | 34 |
| abstract_inverted_index.pairs) | 103 |
| abstract_inverted_index.setup. | 209 |
| abstract_inverted_index.suffer | 46 |
| abstract_inverted_index.useful | 127 |
| abstract_inverted_index.(mBERT, | 86 |
| abstract_inverted_index.44.78\% | 144 |
| abstract_inverted_index.English | 41, 179 |
| abstract_inverted_index.Natural | 11 |
| abstract_inverted_index.adapted | 137 |
| abstract_inverted_index.capture | 153 |
| abstract_inverted_index.dataset | 99 |
| abstract_inverted_index.limited | 69, 134, 207 |
| abstract_inverted_index.models, | 10 |
| abstract_inverted_index.propose | 77 |
| abstract_inverted_index.results | 204 |
| abstract_inverted_index.source) | 114 |
| abstract_inverted_index.summary | 102 |
| abstract_inverted_index.textual | 20 |
| abstract_inverted_index.towards | 194 |
| abstract_inverted_index.Choosing | 109 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.Language | 12 |
| abstract_inverted_index.Learning | 5 |
| abstract_inverted_index.Networks | 9 |
| abstract_inverted_index.ROUGE-1, | 167 |
| abstract_inverted_index.adapting | 81 |
| abstract_inverted_index.approach | 193 |
| abstract_inverted_index.article, | 101 |
| abstract_inverted_index.baseline | 64, 98, 192 |
| abstract_inverted_index.compared | 149 |
| abstract_inverted_index.datasets | 57 |
| abstract_inverted_index.language | 107, 159, 178 |
| abstract_inverted_index.proposed | 125, 188 |
| abstract_inverted_index.provided | 190 |
| abstract_inverted_index.publicly | 112 |
| abstract_inverted_index.research | 32 |
| abstract_inverted_index.resource | 158, 177, 208 |
| abstract_inverted_index.results. | 66 |
| abstract_inverted_index.training | 56 |
| abstract_inverted_index.accuracy. | 29 |
| abstract_inverted_index.available | 51, 113 |
| abstract_inverted_index.languages | 38, 44, 132 |
| abstract_inverted_index.potential | 121 |
| abstract_inverted_index.reduction | 145 |
| abstract_inverted_index.resources | 52, 72 |
| abstract_inverted_index.witnessed | 16 |
| abstract_inverted_index.Artificial | 7 |
| abstract_inverted_index.BERTScore) | 169 |
| abstract_inverted_index.Dataset)}. | 186 |
| abstract_inverted_index.Processing | 13 |
| abstract_inverted_index.contextual | 154 |
| abstract_inverted_index.efficiency | 27 |
| abstract_inverted_index.evaluation | 65, 162, 203 |
| abstract_inverted_index.extractive | 195 |
| abstract_inverted_index.languages, | 75 |
| abstract_inverted_index.processing | 22 |
| abstract_inverted_index.resources. | 135 |
| abstract_inverted_index.restricted | 35 |
| abstract_inverted_index.Considering | 67 |
| abstract_inverted_index.abstractive | 199 |
| abstract_inverted_index.application | 117 |
| abstract_inverted_index.competitive | 202 |
| abstract_inverted_index.effectively | 160 |
| abstract_inverted_index.information | 155 |
| abstract_inverted_index.methodology | 79, 126 |
| abstract_inverted_index.reproducing | 129 |
| abstract_inverted_index.significant | 17 |
| abstract_inverted_index.\textit{mT5} | 151 |
| abstract_inverted_index.architecture | 84 |
| abstract_inverted_index.availability | 70 |
| abstract_inverted_index.construction | 94 |
| abstract_inverted_index.improvements | 18 |
| abstract_inverted_index.low-resource | 43, 74, 89, 106 |
| abstract_inverted_index.supplemented | 91 |
| abstract_inverted_index.\textit{urT5} | 140 |
| abstract_inverted_index.high-resource | 37 |
| abstract_inverted_index.summarization | 138, 200 |
| abstract_inverted_index.self-attentive | 82 |
| abstract_inverted_index.summarization, | 90 |
| abstract_inverted_index.state-of-the-art | 173 |
| abstract_inverted_index.\textit{(PEGASUS: | 180 |
| abstract_inverted_index.transformer-based | 83 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |