Low-SNR Infrared Point Target Detection and Tracking via Saliency-Guided Double-Stage Particle Filter Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s22072791
Low signal-to-noise ratio (SNR) infrared point target detection and tracking is crucial to study regarding infrared remote sensing. In the low-SNR images, the intensive noise will submerge targets. In this letter, a saliency-guided double-stage particle filter (SGDS-PF) formed by the searching particle filter (PF) and tracking PF is proposed to detect and track targets. Before the searching PF, to suppress noise and enhance targets, the single-frame and multi-frame target accumulation methods are introduced. Besides, the likelihood estimation filter and image block segmentation are proposed to extract the likelihood saliency and obtain proper proposal density. Guided by this proposal density, the searching PF detects potential targets efficiently. Then, with the result of the searching PF, the tracking PF is adopted to track and confirm the potential targets. Finally, the path of the real targets will be output. Compared with the existing methods, the SGDS-PF optimizes the proposal density for low-SNR images. Using a few accurate particles, the searching PF detects potential targets quickly and accurately. In addition, initialized by the searching PF, the tracking PF can keep tracking targets using very few particles even under intensive noise. Furthermore, the parameters have been selected appropriately through experiments. Extensive experimental results show that the SGDS-PF has an outstanding performance in tracking precision, tracking reliability, and time consumption. The SGDS-PF outperforms the other advanced methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s22072791
- https://www.mdpi.com/1424-8220/22/7/2791/pdf?version=1649347163
- OA Status
- gold
- Cited By
- 14
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4223593794
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4223593794Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s22072791Digital Object Identifier
- Title
-
Low-SNR Infrared Point Target Detection and Tracking via Saliency-Guided Double-Stage Particle FilterWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-05Full publication date if available
- Authors
-
Liangjie Jia, Peng Rao, Yuke Zhang, Yueqi Su, Xin ChenList of authors in order
- Landing page
-
https://doi.org/10.3390/s22072791Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/22/7/2791/pdf?version=1649347163Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/22/7/2791/pdf?version=1649347163Direct OA link when available
- Concepts
-
Tracking (education), Computer vision, Artificial intelligence, Computer science, Particle filter, Segmentation, Noise (video), Filter (signal processing), Frame (networking), Point target, Point (geometry), Pattern recognition (psychology), Mathematics, Image (mathematics), Telecommunications, Synthetic aperture radar, Geometry, Pedagogy, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3, 2023: 5, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4223593794 |
|---|---|
| doi | https://doi.org/10.3390/s22072791 |
| ids.doi | https://doi.org/10.3390/s22072791 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35408405 |
| ids.openalex | https://openalex.org/W4223593794 |
| fwci | 4.73453066 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D009622 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Noise |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D011336 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Probability |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D015203 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Reproducibility of Results |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D059629 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Signal-To-Noise Ratio |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D009622 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Noise |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D011336 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Probability |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D015203 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Reproducibility of Results |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D059629 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Signal-To-Noise Ratio |
| type | article |
| title | Low-SNR Infrared Point Target Detection and Tracking via Saliency-Guided Double-Stage Particle Filter |
| awards[0].id | https://openalex.org/G5919375550 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62175251 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 7 |
| biblio.volume | 22 |
| biblio.last_page | 2791 |
| biblio.first_page | 2791 |
| topics[0].id | https://openalex.org/T12389 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Infrared Target Detection Methodologies |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T12019 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.983299970626831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Calibration and Measurement Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C2775936607 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7226804494857788 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[0].display_name | Tracking (education) |
| concepts[1].id | https://openalex.org/C31972630 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7060081362724304 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[1].display_name | Computer vision |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.698935866355896 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6634775400161743 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C52421305 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6260607242584229 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1151499 |
| concepts[4].display_name | Particle filter |
| concepts[5].id | https://openalex.org/C89600930 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5752918720245361 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[5].display_name | Segmentation |
| concepts[6].id | https://openalex.org/C99498987 |
| concepts[6].level | 3 |
| concepts[6].score | 0.540882408618927 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[6].display_name | Noise (video) |
| concepts[7].id | https://openalex.org/C106131492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5358288288116455 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[7].display_name | Filter (signal processing) |
| concepts[8].id | https://openalex.org/C126042441 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4810812175273895 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1324888 |
| concepts[8].display_name | Frame (networking) |
| concepts[9].id | https://openalex.org/C2778999744 |
| concepts[9].level | 3 |
| concepts[9].score | 0.45507633686065674 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7208292 |
| concepts[9].display_name | Point target |
| concepts[10].id | https://openalex.org/C28719098 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42999961972236633 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[10].display_name | Point (geometry) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.36699485778808594 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.23487403988838196 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2161146104335785 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07230576872825623 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C87360688 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0716981291770935 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[15].display_name | Synthetic aperture radar |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C19417346 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[17].display_name | Pedagogy |
| concepts[18].id | https://openalex.org/C15744967 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[18].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/tracking |
| keywords[0].score | 0.7226804494857788 |
| keywords[0].display_name | Tracking (education) |
| keywords[1].id | https://openalex.org/keywords/computer-vision |
| keywords[1].score | 0.7060081362724304 |
| keywords[1].display_name | Computer vision |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.698935866355896 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6634775400161743 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/particle-filter |
| keywords[4].score | 0.6260607242584229 |
| keywords[4].display_name | Particle filter |
| keywords[5].id | https://openalex.org/keywords/segmentation |
| keywords[5].score | 0.5752918720245361 |
| keywords[5].display_name | Segmentation |
| keywords[6].id | https://openalex.org/keywords/noise |
| keywords[6].score | 0.540882408618927 |
| keywords[6].display_name | Noise (video) |
| keywords[7].id | https://openalex.org/keywords/filter |
| keywords[7].score | 0.5358288288116455 |
| keywords[7].display_name | Filter (signal processing) |
| keywords[8].id | https://openalex.org/keywords/frame |
| keywords[8].score | 0.4810812175273895 |
| keywords[8].display_name | Frame (networking) |
| keywords[9].id | https://openalex.org/keywords/point-target |
| keywords[9].score | 0.45507633686065674 |
| keywords[9].display_name | Point target |
| keywords[10].id | https://openalex.org/keywords/point |
| keywords[10].score | 0.42999961972236633 |
| keywords[10].display_name | Point (geometry) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.36699485778808594 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.23487403988838196 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.2161146104335785 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/telecommunications |
| keywords[14].score | 0.07230576872825623 |
| keywords[14].display_name | Telecommunications |
| keywords[15].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[15].score | 0.0716981291770935 |
| keywords[15].display_name | Synthetic aperture radar |
| language | en |
| locations[0].id | doi:10.3390/s22072791 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/22/7/2791/pdf?version=1649347163 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s22072791 |
| locations[1].id | pmid:35408405 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35408405 |
| locations[2].id | pmh:oai:doaj.org/article:c00933cf431a419a91ecdd584c589524 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 22, Iss 7, p 2791 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/c00933cf431a419a91ecdd584c589524 |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/22/7/2791/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 22; Issue 7; Pages: 2791 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s22072791 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9003241 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9003241 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5011094196 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Liangjie Jia |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I19820366 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210165038 |
| authorships[0].affiliations[2].raw_affiliation_string | University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210135723 |
| authorships[0].institutions[1].ror | https://ror.org/02txedb84 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shanghai Institute of Technical Physics |
| authorships[0].institutions[2].id | https://openalex.org/I4210165038 |
| authorships[0].institutions[2].ror | https://ror.org/05qbk4x57 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | University of Chinese Academy of Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liangjie Jia |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China, University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[1].author.id | https://openalex.org/A5043946933 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6701-4034 |
| authorships[1].author.display_name | Peng Rao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[1].affiliations[1].raw_affiliation_string | Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210135723 |
| authorships[1].institutions[1].ror | https://ror.org/02txedb84 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shanghai Institute of Technical Physics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peng Rao |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[2].author.id | https://openalex.org/A5019021341 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5253-5478 |
| authorships[2].author.display_name | Yuke Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[2].affiliations[0].raw_affiliation_string | Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I19820366 |
| authorships[2].affiliations[1].raw_affiliation_string | Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210165038 |
| authorships[2].affiliations[2].raw_affiliation_string | University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210135723 |
| authorships[2].institutions[1].ror | https://ror.org/02txedb84 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Shanghai Institute of Technical Physics |
| authorships[2].institutions[2].id | https://openalex.org/I4210165038 |
| authorships[2].institutions[2].ror | https://ror.org/05qbk4x57 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[2].institutions[2].country_code | CN |
| authorships[2].institutions[2].display_name | University of Chinese Academy of Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuke Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China, University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[3].author.id | https://openalex.org/A5065401707 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2387-3958 |
| authorships[3].author.display_name | Yueqi Su |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210165038 |
| authorships[3].affiliations[1].raw_affiliation_string | University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[3].affiliations[2].raw_affiliation_string | Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210135723 |
| authorships[3].institutions[1].ror | https://ror.org/02txedb84 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Shanghai Institute of Technical Physics |
| authorships[3].institutions[2].id | https://openalex.org/I4210165038 |
| authorships[3].institutions[2].ror | https://ror.org/05qbk4x57 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[3].institutions[2].country_code | CN |
| authorships[3].institutions[2].display_name | University of Chinese Academy of Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yueqi Su |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China, University of Chinese Academy of Sciences, Beijing 100049, China |
| authorships[4].author.id | https://openalex.org/A5100613516 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7720-8916 |
| authorships[4].author.display_name | Xin Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[4].affiliations[0].raw_affiliation_string | Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I19820366 |
| authorships[4].affiliations[1].raw_affiliation_string | Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210135723 |
| authorships[4].institutions[1].ror | https://ror.org/02txedb84 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Shanghai Institute of Technical Physics |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xin Chen |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/22/7/2791/pdf?version=1649347163 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Low-SNR Infrared Point Target Detection and Tracking via Saliency-Guided Double-Stage Particle Filter |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12389 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Infrared Target Detection Methodologies |
| related_works | https://openalex.org/W2015530857, https://openalex.org/W1989212443, https://openalex.org/W2103644279, https://openalex.org/W4302986566, https://openalex.org/W877199042, https://openalex.org/W1968585197, https://openalex.org/W2163445067, https://openalex.org/W4247544095, https://openalex.org/W2122155275, https://openalex.org/W2348173704 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s22072791 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/22/7/2791/pdf?version=1649347163 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s22072791 |
| primary_location.id | doi:10.3390/s22072791 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/22/7/2791/pdf?version=1649347163 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s22072791 |
| publication_date | 2022-04-05 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3017347451, https://openalex.org/W2041646550, https://openalex.org/W2741058951, https://openalex.org/W2608358103, https://openalex.org/W2793295500, https://openalex.org/W2969901725, https://openalex.org/W2202516779, https://openalex.org/W3111879502, https://openalex.org/W2041560658, https://openalex.org/W3024748887, https://openalex.org/W2341998679, https://openalex.org/W2921709033, https://openalex.org/W2072216778, https://openalex.org/W2327560060, https://openalex.org/W2782405382, https://openalex.org/W2903712687, https://openalex.org/W2947066337, https://openalex.org/W2041888557, https://openalex.org/W2900678331, https://openalex.org/W2118702465, https://openalex.org/W2042301151, https://openalex.org/W6787385504, https://openalex.org/W2078967604, https://openalex.org/W6684584257, https://openalex.org/W2067341428, https://openalex.org/W2612125686, https://openalex.org/W2605368429, https://openalex.org/W2084561104, https://openalex.org/W3159631021, https://openalex.org/W2419340481, https://openalex.org/W2050358028, https://openalex.org/W2769399748, https://openalex.org/W2791965583, https://openalex.org/W3087921942, https://openalex.org/W2759168365, https://openalex.org/W2043927941, https://openalex.org/W2904762236, https://openalex.org/W2761624840, https://openalex.org/W2884396356, https://openalex.org/W3112349498 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 31, 151 |
| abstract_inverted_index.In | 18, 28, 164 |
| abstract_inverted_index.PF | 46, 101, 116, 157, 173 |
| abstract_inverted_index.an | 203 |
| abstract_inverted_index.be | 134 |
| abstract_inverted_index.by | 38, 95, 167 |
| abstract_inverted_index.in | 206 |
| abstract_inverted_index.is | 10, 47, 117 |
| abstract_inverted_index.of | 110, 129 |
| abstract_inverted_index.to | 12, 49, 58, 84, 119 |
| abstract_inverted_index.Low | 0 |
| abstract_inverted_index.PF, | 57, 113, 170 |
| abstract_inverted_index.The | 214 |
| abstract_inverted_index.and | 8, 44, 51, 61, 66, 78, 89, 121, 162, 211 |
| abstract_inverted_index.are | 71, 82 |
| abstract_inverted_index.can | 174 |
| abstract_inverted_index.few | 152, 180 |
| abstract_inverted_index.for | 147 |
| abstract_inverted_index.has | 202 |
| abstract_inverted_index.the | 19, 22, 39, 55, 64, 74, 86, 99, 108, 111, 114, 123, 127, 130, 138, 141, 144, 155, 168, 171, 187, 200, 217 |
| abstract_inverted_index.(PF) | 43 |
| abstract_inverted_index.been | 190 |
| abstract_inverted_index.even | 182 |
| abstract_inverted_index.have | 189 |
| abstract_inverted_index.keep | 175 |
| abstract_inverted_index.path | 128 |
| abstract_inverted_index.real | 131 |
| abstract_inverted_index.show | 198 |
| abstract_inverted_index.that | 199 |
| abstract_inverted_index.this | 29, 96 |
| abstract_inverted_index.time | 212 |
| abstract_inverted_index.very | 179 |
| abstract_inverted_index.will | 25, 133 |
| abstract_inverted_index.with | 107, 137 |
| abstract_inverted_index.(SNR) | 3 |
| abstract_inverted_index.Then, | 106 |
| abstract_inverted_index.Using | 150 |
| abstract_inverted_index.block | 80 |
| abstract_inverted_index.image | 79 |
| abstract_inverted_index.noise | 24, 60 |
| abstract_inverted_index.other | 218 |
| abstract_inverted_index.point | 5 |
| abstract_inverted_index.ratio | 2 |
| abstract_inverted_index.study | 13 |
| abstract_inverted_index.track | 52, 120 |
| abstract_inverted_index.under | 183 |
| abstract_inverted_index.using | 178 |
| abstract_inverted_index.Before | 54 |
| abstract_inverted_index.Guided | 94 |
| abstract_inverted_index.detect | 50 |
| abstract_inverted_index.filter | 35, 42, 77 |
| abstract_inverted_index.formed | 37 |
| abstract_inverted_index.noise. | 185 |
| abstract_inverted_index.obtain | 90 |
| abstract_inverted_index.proper | 91 |
| abstract_inverted_index.remote | 16 |
| abstract_inverted_index.result | 109 |
| abstract_inverted_index.target | 6, 68 |
| abstract_inverted_index.SGDS-PF | 142, 201, 215 |
| abstract_inverted_index.adopted | 118 |
| abstract_inverted_index.confirm | 122 |
| abstract_inverted_index.crucial | 11 |
| abstract_inverted_index.density | 146 |
| abstract_inverted_index.detects | 102, 158 |
| abstract_inverted_index.enhance | 62 |
| abstract_inverted_index.extract | 85 |
| abstract_inverted_index.images, | 21 |
| abstract_inverted_index.images. | 149 |
| abstract_inverted_index.letter, | 30 |
| abstract_inverted_index.low-SNR | 20, 148 |
| abstract_inverted_index.methods | 70 |
| abstract_inverted_index.output. | 135 |
| abstract_inverted_index.quickly | 161 |
| abstract_inverted_index.results | 197 |
| abstract_inverted_index.targets | 104, 132, 160, 177 |
| abstract_inverted_index.through | 193 |
| abstract_inverted_index.Besides, | 73 |
| abstract_inverted_index.Compared | 136 |
| abstract_inverted_index.Finally, | 126 |
| abstract_inverted_index.accurate | 153 |
| abstract_inverted_index.advanced | 219 |
| abstract_inverted_index.density, | 98 |
| abstract_inverted_index.density. | 93 |
| abstract_inverted_index.existing | 139 |
| abstract_inverted_index.infrared | 4, 15 |
| abstract_inverted_index.methods, | 140 |
| abstract_inverted_index.methods. | 220 |
| abstract_inverted_index.particle | 34, 41 |
| abstract_inverted_index.proposal | 92, 97, 145 |
| abstract_inverted_index.proposed | 48, 83 |
| abstract_inverted_index.saliency | 88 |
| abstract_inverted_index.selected | 191 |
| abstract_inverted_index.sensing. | 17 |
| abstract_inverted_index.submerge | 26 |
| abstract_inverted_index.suppress | 59 |
| abstract_inverted_index.targets, | 63 |
| abstract_inverted_index.targets. | 27, 53, 125 |
| abstract_inverted_index.tracking | 9, 45, 115, 172, 176, 207, 209 |
| abstract_inverted_index.(SGDS-PF) | 36 |
| abstract_inverted_index.Extensive | 195 |
| abstract_inverted_index.addition, | 165 |
| abstract_inverted_index.detection | 7 |
| abstract_inverted_index.intensive | 23, 184 |
| abstract_inverted_index.optimizes | 143 |
| abstract_inverted_index.particles | 181 |
| abstract_inverted_index.potential | 103, 124, 159 |
| abstract_inverted_index.regarding | 14 |
| abstract_inverted_index.searching | 40, 56, 100, 112, 156, 169 |
| abstract_inverted_index.estimation | 76 |
| abstract_inverted_index.likelihood | 75, 87 |
| abstract_inverted_index.parameters | 188 |
| abstract_inverted_index.particles, | 154 |
| abstract_inverted_index.precision, | 208 |
| abstract_inverted_index.accurately. | 163 |
| abstract_inverted_index.initialized | 166 |
| abstract_inverted_index.introduced. | 72 |
| abstract_inverted_index.multi-frame | 67 |
| abstract_inverted_index.outperforms | 216 |
| abstract_inverted_index.outstanding | 204 |
| abstract_inverted_index.performance | 205 |
| abstract_inverted_index.Furthermore, | 186 |
| abstract_inverted_index.accumulation | 69 |
| abstract_inverted_index.consumption. | 213 |
| abstract_inverted_index.double-stage | 33 |
| abstract_inverted_index.efficiently. | 105 |
| abstract_inverted_index.experimental | 196 |
| abstract_inverted_index.experiments. | 194 |
| abstract_inverted_index.reliability, | 210 |
| abstract_inverted_index.segmentation | 81 |
| abstract_inverted_index.single-frame | 65 |
| abstract_inverted_index.appropriately | 192 |
| abstract_inverted_index.saliency-guided | 32 |
| abstract_inverted_index.signal-to-noise | 1 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5043946933, https://openalex.org/A5100613516 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210135723 |
| citation_normalized_percentile.value | 0.93841967 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |