Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/s24103097
During robot-assisted rehabilitation, failure to recognize lower limb movement may efficiently limit the development of exoskeleton robots, especially for individuals with knee pathology. A major challenge encountered with surface electromyography (sEMG) signals generated by lower limb movements is variability between subjects, such as motion patterns and muscle structure. To this end, this paper proposes an sEMG-based lower limb motion recognition using an improved support vector machine (SVM). Firstly, non-negative matrix factorization (NMF) is leveraged to analyze muscle synergy for multi-channel sEMG signals. Secondly, the multi-nonlinear sEMG features are extracted, which reflect the complexity of muscle status change during various lower limb movements. The Fisher discriminant function method is utilized to perform feature selection and reduce feature dimension. Then, a hybrid genetic algorithm-particle swarm optimization (GA-PSO) method is leveraged to determine the best parameters for SVM. Finally, the experiments are carried out to distinguish 11 healthy and 11 knee pathological subjects by performing three different lower limb movements. Results demonstrate the effectiveness and feasibility of the proposed approach in three different lower limb movements with an average accuracy of 96.03% in healthy subjects and 93.65% in knee pathological subjects, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s24103097
- https://www.mdpi.com/1424-8220/24/10/3097/pdf?version=1715609614
- OA Status
- gold
- Cited By
- 8
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396855449
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396855449Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s24103097Digital Object Identifier
- Title
-
Lower Limb Motion Recognition with Improved SVM Based on Surface ElectromyographyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-13Full publication date if available
- Authors
-
Pengjia Tu, Junhuai Li, Huaijun WangList of authors in order
- Landing page
-
https://doi.org/10.3390/s24103097Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/24/10/3097/pdf?version=1715609614Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/24/10/3097/pdf?version=1715609614Direct OA link when available
- Concepts
-
Electromyography, Support vector machine, Exoskeleton, Linear discriminant analysis, Artificial intelligence, Pattern recognition (psychology), Computer science, Feature selection, Feature (linguistics), Physical medicine and rehabilitation, Medicine, Simulation, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396855449 |
|---|---|
| doi | https://doi.org/10.3390/s24103097 |
| ids.doi | https://doi.org/10.3390/s24103097 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38793951 |
| ids.openalex | https://openalex.org/W4396855449 |
| fwci | 2.9402077 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D004576 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Electromyography |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D060388 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Support Vector Machine |
| mesh[3].qualifier_ui | Q000502 |
| mesh[3].descriptor_ui | D035002 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | physiology |
| mesh[3].descriptor_name | Lower Extremity |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008297 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Male |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000328 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Adult |
| mesh[7].qualifier_ui | Q000502 |
| mesh[7].descriptor_ui | D009068 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | physiology |
| mesh[7].descriptor_name | Movement |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005260 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Female |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D012815 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D055815 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Young Adult |
| mesh[11].qualifier_ui | Q000502 |
| mesh[11].descriptor_ui | D018482 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | physiology |
| mesh[11].descriptor_name | Muscle, Skeletal |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D004576 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Electromyography |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D060388 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Support Vector Machine |
| mesh[15].qualifier_ui | Q000502 |
| mesh[15].descriptor_ui | D035002 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | physiology |
| mesh[15].descriptor_name | Lower Extremity |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000465 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Algorithms |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D008297 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Male |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000328 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Adult |
| mesh[19].qualifier_ui | Q000502 |
| mesh[19].descriptor_ui | D009068 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | physiology |
| mesh[19].descriptor_name | Movement |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D005260 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Female |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D012815 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D055815 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Young Adult |
| mesh[23].qualifier_ui | Q000502 |
| mesh[23].descriptor_ui | D018482 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | physiology |
| mesh[23].descriptor_name | Muscle, Skeletal |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D006801 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Humans |
| mesh[25].qualifier_ui | Q000379 |
| mesh[25].descriptor_ui | D004576 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | methods |
| mesh[25].descriptor_name | Electromyography |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D060388 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Support Vector Machine |
| mesh[27].qualifier_ui | Q000502 |
| mesh[27].descriptor_ui | D035002 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | physiology |
| mesh[27].descriptor_name | Lower Extremity |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D000465 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Algorithms |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D008297 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Male |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000328 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Adult |
| mesh[31].qualifier_ui | Q000502 |
| mesh[31].descriptor_ui | D009068 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | physiology |
| mesh[31].descriptor_name | Movement |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D005260 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Female |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D012815 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D055815 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Young Adult |
| mesh[35].qualifier_ui | Q000502 |
| mesh[35].descriptor_ui | D018482 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | physiology |
| mesh[35].descriptor_name | Muscle, Skeletal |
| type | article |
| title | Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography |
| awards[0].id | https://openalex.org/G3134235651 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61971347 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 10 |
| biblio.volume | 24 |
| biblio.last_page | 3097 |
| biblio.first_page | 3097 |
| topics[0].id | https://openalex.org/T10784 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Muscle activation and electromyography studies |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10338 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Sensor and Energy Harvesting Materials |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C2777515770 |
| concepts[0].level | 2 |
| concepts[0].score | 0.717551052570343 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q507369 |
| concepts[0].display_name | Electromyography |
| concepts[1].id | https://openalex.org/C12267149 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7075538635253906 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[1].display_name | Support vector machine |
| concepts[2].id | https://openalex.org/C146549078 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6796184778213501 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q191944 |
| concepts[2].display_name | Exoskeleton |
| concepts[3].id | https://openalex.org/C69738355 |
| concepts[3].level | 2 |
| concepts[3].score | 0.56741863489151 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1228929 |
| concepts[3].display_name | Linear discriminant analysis |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5670951008796692 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5575401782989502 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5236065983772278 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C148483581 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4480019509792328 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[7].display_name | Feature selection |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41990625858306885 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C99508421 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38254910707473755 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[9].display_name | Physical medicine and rehabilitation |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.14695122838020325 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C44154836 |
| concepts[11].level | 1 |
| concepts[11].score | 0.13744664192199707 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[11].display_name | Simulation |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/electromyography |
| keywords[0].score | 0.717551052570343 |
| keywords[0].display_name | Electromyography |
| keywords[1].id | https://openalex.org/keywords/support-vector-machine |
| keywords[1].score | 0.7075538635253906 |
| keywords[1].display_name | Support vector machine |
| keywords[2].id | https://openalex.org/keywords/exoskeleton |
| keywords[2].score | 0.6796184778213501 |
| keywords[2].display_name | Exoskeleton |
| keywords[3].id | https://openalex.org/keywords/linear-discriminant-analysis |
| keywords[3].score | 0.56741863489151 |
| keywords[3].display_name | Linear discriminant analysis |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5670951008796692 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5575401782989502 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5236065983772278 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/feature-selection |
| keywords[7].score | 0.4480019509792328 |
| keywords[7].display_name | Feature selection |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.41990625858306885 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[9].score | 0.38254910707473755 |
| keywords[9].display_name | Physical medicine and rehabilitation |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.14695122838020325 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/simulation |
| keywords[11].score | 0.13744664192199707 |
| keywords[11].display_name | Simulation |
| language | en |
| locations[0].id | doi:10.3390/s24103097 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/24/10/3097/pdf?version=1715609614 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s24103097 |
| locations[1].id | pmid:38793951 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38793951 |
| locations[2].id | pmh:oai:doaj.org/article:661e0347023f4162999891541d3c7d1f |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 24, Iss 10, p 3097 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/661e0347023f4162999891541d3c7d1f |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11125431 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11125431 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5019281332 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5517-8613 |
| authorships[0].author.display_name | Pengjia Tu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I110440473 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China |
| authorships[0].institutions[0].id | https://openalex.org/I110440473 |
| authorships[0].institutions[0].ror | https://ror.org/046fkpt18 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I110440473 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi'an University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pengjia Tu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China |
| authorships[1].author.id | https://openalex.org/A5046113804 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5483-5175 |
| authorships[1].author.display_name | Junhuai Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi'an University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Junhuai Li |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
| authorships[2].author.id | https://openalex.org/A5069263111 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2933-6566 |
| authorships[2].author.display_name | Huaijun Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[2].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi'an University of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Huaijun Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/24/10/3097/pdf?version=1715609614 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Lower Limb Motion Recognition with Improved SVM Based on Surface Electromyography |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10784 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Muscle activation and electromyography studies |
| related_works | https://openalex.org/W2901258812, https://openalex.org/W2887985348, https://openalex.org/W2401700601, https://openalex.org/W2570835373, https://openalex.org/W2557545276, https://openalex.org/W4387054232, https://openalex.org/W3198063775, https://openalex.org/W2753647732, https://openalex.org/W4303574780, https://openalex.org/W2590554196 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s24103097 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/24/10/3097/pdf?version=1715609614 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s24103097 |
| primary_location.id | doi:10.3390/s24103097 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/24/10/3097/pdf?version=1715609614 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s24103097 |
| publication_date | 2024-05-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3216440402, https://openalex.org/W4200626983, https://openalex.org/W4319996222, https://openalex.org/W4392919119, https://openalex.org/W4390953187, https://openalex.org/W2742425536, https://openalex.org/W2951363341, https://openalex.org/W2065645529, https://openalex.org/W1187446851, https://openalex.org/W4210387007, https://openalex.org/W4293117584, https://openalex.org/W2891681470, https://openalex.org/W3163681714, https://openalex.org/W3096888534, https://openalex.org/W3127762213, https://openalex.org/W6799548399, https://openalex.org/W2017197211, https://openalex.org/W3213916406, https://openalex.org/W4225528062, https://openalex.org/W3119831520, https://openalex.org/W2077204677, https://openalex.org/W3135766927, https://openalex.org/W4211007335, https://openalex.org/W2059851411, https://openalex.org/W2992107501, https://openalex.org/W2152254020, https://openalex.org/W1987868073, https://openalex.org/W4226082723, https://openalex.org/W2803935259, https://openalex.org/W1982356933, https://openalex.org/W3183622623, https://openalex.org/W6849557911, https://openalex.org/W3186506419, https://openalex.org/W4393150093, https://openalex.org/W4321380680, https://openalex.org/W4225848842, https://openalex.org/W4229063342 |
| referenced_works_count | 37 |
| abstract_inverted_index.A | 23 |
| abstract_inverted_index.a | 118 |
| abstract_inverted_index.11 | 143, 146 |
| abstract_inverted_index.To | 48 |
| abstract_inverted_index.an | 54, 61, 174 |
| abstract_inverted_index.as | 42 |
| abstract_inverted_index.by | 33, 150 |
| abstract_inverted_index.in | 167, 179, 184 |
| abstract_inverted_index.is | 37, 72, 107, 126 |
| abstract_inverted_index.of | 14, 93, 163, 177 |
| abstract_inverted_index.to | 4, 74, 109, 128, 141 |
| abstract_inverted_index.The | 102 |
| abstract_inverted_index.and | 45, 113, 145, 161, 182 |
| abstract_inverted_index.are | 87, 138 |
| abstract_inverted_index.for | 18, 78, 133 |
| abstract_inverted_index.may | 9 |
| abstract_inverted_index.out | 140 |
| abstract_inverted_index.the | 12, 83, 91, 130, 136, 159, 164 |
| abstract_inverted_index.SVM. | 134 |
| abstract_inverted_index.best | 131 |
| abstract_inverted_index.end, | 50 |
| abstract_inverted_index.knee | 21, 147, 185 |
| abstract_inverted_index.limb | 7, 35, 57, 100, 155, 171 |
| abstract_inverted_index.sEMG | 80, 85 |
| abstract_inverted_index.such | 41 |
| abstract_inverted_index.this | 49, 51 |
| abstract_inverted_index.with | 20, 27, 173 |
| abstract_inverted_index.(NMF) | 71 |
| abstract_inverted_index.Then, | 117 |
| abstract_inverted_index.limit | 11 |
| abstract_inverted_index.lower | 6, 34, 56, 99, 154, 170 |
| abstract_inverted_index.major | 24 |
| abstract_inverted_index.paper | 52 |
| abstract_inverted_index.swarm | 122 |
| abstract_inverted_index.three | 152, 168 |
| abstract_inverted_index.using | 60 |
| abstract_inverted_index.which | 89 |
| abstract_inverted_index.(SVM). | 66 |
| abstract_inverted_index.(sEMG) | 30 |
| abstract_inverted_index.93.65% | 183 |
| abstract_inverted_index.96.03% | 178 |
| abstract_inverted_index.During | 0 |
| abstract_inverted_index.Fisher | 103 |
| abstract_inverted_index.change | 96 |
| abstract_inverted_index.during | 97 |
| abstract_inverted_index.hybrid | 119 |
| abstract_inverted_index.matrix | 69 |
| abstract_inverted_index.method | 106, 125 |
| abstract_inverted_index.motion | 43, 58 |
| abstract_inverted_index.muscle | 46, 76, 94 |
| abstract_inverted_index.reduce | 114 |
| abstract_inverted_index.status | 95 |
| abstract_inverted_index.vector | 64 |
| abstract_inverted_index.Results | 157 |
| abstract_inverted_index.analyze | 75 |
| abstract_inverted_index.average | 175 |
| abstract_inverted_index.between | 39 |
| abstract_inverted_index.carried | 139 |
| abstract_inverted_index.failure | 3 |
| abstract_inverted_index.feature | 111, 115 |
| abstract_inverted_index.genetic | 120 |
| abstract_inverted_index.healthy | 144, 180 |
| abstract_inverted_index.machine | 65 |
| abstract_inverted_index.perform | 110 |
| abstract_inverted_index.reflect | 90 |
| abstract_inverted_index.robots, | 16 |
| abstract_inverted_index.signals | 31 |
| abstract_inverted_index.support | 63 |
| abstract_inverted_index.surface | 28 |
| abstract_inverted_index.synergy | 77 |
| abstract_inverted_index.various | 98 |
| abstract_inverted_index.(GA-PSO) | 124 |
| abstract_inverted_index.Finally, | 135 |
| abstract_inverted_index.Firstly, | 67 |
| abstract_inverted_index.accuracy | 176 |
| abstract_inverted_index.approach | 166 |
| abstract_inverted_index.features | 86 |
| abstract_inverted_index.function | 105 |
| abstract_inverted_index.improved | 62 |
| abstract_inverted_index.movement | 8 |
| abstract_inverted_index.patterns | 44 |
| abstract_inverted_index.proposed | 165 |
| abstract_inverted_index.proposes | 53 |
| abstract_inverted_index.signals. | 81 |
| abstract_inverted_index.subjects | 149, 181 |
| abstract_inverted_index.utilized | 108 |
| abstract_inverted_index.Secondly, | 82 |
| abstract_inverted_index.challenge | 25 |
| abstract_inverted_index.determine | 129 |
| abstract_inverted_index.different | 153, 169 |
| abstract_inverted_index.generated | 32 |
| abstract_inverted_index.leveraged | 73, 127 |
| abstract_inverted_index.movements | 36, 172 |
| abstract_inverted_index.recognize | 5 |
| abstract_inverted_index.selection | 112 |
| abstract_inverted_index.subjects, | 40, 187 |
| abstract_inverted_index.complexity | 92 |
| abstract_inverted_index.dimension. | 116 |
| abstract_inverted_index.especially | 17 |
| abstract_inverted_index.extracted, | 88 |
| abstract_inverted_index.movements. | 101, 156 |
| abstract_inverted_index.parameters | 132 |
| abstract_inverted_index.pathology. | 22 |
| abstract_inverted_index.performing | 151 |
| abstract_inverted_index.sEMG-based | 55 |
| abstract_inverted_index.structure. | 47 |
| abstract_inverted_index.demonstrate | 158 |
| abstract_inverted_index.development | 13 |
| abstract_inverted_index.distinguish | 142 |
| abstract_inverted_index.efficiently | 10 |
| abstract_inverted_index.encountered | 26 |
| abstract_inverted_index.exoskeleton | 15 |
| abstract_inverted_index.experiments | 137 |
| abstract_inverted_index.feasibility | 162 |
| abstract_inverted_index.individuals | 19 |
| abstract_inverted_index.recognition | 59 |
| abstract_inverted_index.variability | 38 |
| abstract_inverted_index.discriminant | 104 |
| abstract_inverted_index.non-negative | 68 |
| abstract_inverted_index.optimization | 123 |
| abstract_inverted_index.pathological | 148, 186 |
| abstract_inverted_index.effectiveness | 160 |
| abstract_inverted_index.factorization | 70 |
| abstract_inverted_index.multi-channel | 79 |
| abstract_inverted_index.respectively. | 188 |
| abstract_inverted_index.robot-assisted | 1 |
| abstract_inverted_index.multi-nonlinear | 84 |
| abstract_inverted_index.rehabilitation, | 2 |
| abstract_inverted_index.electromyography | 29 |
| abstract_inverted_index.algorithm-particle | 121 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5046113804 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210131919 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.85452535 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |