Low‐Rank SPIKE Framework for Solving Large Sparse Linear Systems With Applications Article Swipe
The SPIKE family of linear system solvers provides parallelism using a block tridiagonal partitioning. Typically SPIKE‐based solvers are applied to banded systems, resulting in structured off‐diagonal blocks with nonzeros elements restricted to relatively small submatrices comprising the band of the original matrix. In this work, a low‐rank SVD based approximation of the off‐diagonal blocks is investigated. This produces a representation which more effectively handles matrices with large, sparse bands. A set of flexible distributed solvers, the LR‐SPIKE variants, are implemented. These are applicable to a wide range of applications—from use as a “black‐box” preconditioner which straightforwardly improves upon the classic Block Jacobi preconditioner, to use as a specialized “approximate direct solver.” An investigation of the effectiveness of the new preconditioners for a selection of SuiteSparse matrices is performed, particularly focusing on matrices derived from 3D finite element simulations. In addition, the SPIKE approximate linear system solvers are also paired with the FEAST eigenvalue solver, where they are shown to be particularly effective due to the former's rapid convergence, and the latter's acceptance of loose linear system solver convergence, resulting in a combination which requires very few solver iterations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/nla.70049
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nla.70049
- OA Status
- bronze
- References
- 34
- OpenAlex ID
- https://openalex.org/W4416676417
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416676417Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/nla.70049Digital Object Identifier
- Title
-
Low‐Rank SPIKE Framework for Solving Large Sparse Linear Systems With ApplicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-24Full publication date if available
- Authors
-
Eric Polizzi, Ahmed SamehList of authors in order
- Landing page
-
https://doi.org/10.1002/nla.70049Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nla.70049Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nla.70049Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
34Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416676417 |
|---|---|
| doi | https://doi.org/10.1002/nla.70049 |
| ids.doi | https://doi.org/10.1002/nla.70049 |
| ids.openalex | https://openalex.org/W4416676417 |
| fwci | |
| type | article |
| title | Low‐Rank SPIKE Framework for Solving Large Sparse Linear Systems With Applications |
| biblio.issue | 6 |
| biblio.volume | 32 |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 4430 |
| apc_list.currency | USD |
| apc_list.value_usd | 4430 |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1002/nla.70049 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S60324941 |
| locations[0].source.issn | 1070-5325, 1099-1506 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1070-5325 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Numerical Linear Algebra with Applications |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nla.70049 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Numerical Linear Algebra with Applications |
| locations[0].landing_page_url | https://doi.org/10.1002/nla.70049 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5047760188 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8077-2208 |
| authorships[0].author.display_name | Eric Polizzi |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24603500 |
| authorships[0].affiliations[0].raw_affiliation_string | Electrical and Computer Engineering, University of Massachusetts, Amherst, Massachusetts, USA |
| authorships[0].institutions[0].id | https://openalex.org/I24603500 |
| authorships[0].institutions[0].ror | https://ror.org/0072zz521 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24603500 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Massachusetts Amherst |
| authorships[0].author_position | last |
| authorships[0].raw_author_name | Eric Polizzi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Electrical and Computer Engineering, University of Massachusetts, Amherst, Massachusetts, USA |
| authorships[1].author.id | https://openalex.org/A5046544884 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0158-6835 |
| authorships[1].author.display_name | Ahmed Sameh |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Sciences, Purdue University, West-Lafayette, Indiana, USA |
| authorships[1].institutions[0].id | https://openalex.org/I219193219 |
| authorships[1].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Purdue University West Lafayette |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ahmed H. Sameh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Sciences, Purdue University, West-Lafayette, Indiana, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nla.70049 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-25T00:00:00 |
| display_name | Low‐Rank SPIKE Framework for Solving Large Sparse Linear Systems With Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T20:23:49.887843 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/nla.70049 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S60324941 |
| best_oa_location.source.issn | 1070-5325, 1099-1506 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1070-5325 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Numerical Linear Algebra with Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nla.70049 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Numerical Linear Algebra with Applications |
| best_oa_location.landing_page_url | https://doi.org/10.1002/nla.70049 |
| primary_location.id | doi:10.1002/nla.70049 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S60324941 |
| primary_location.source.issn | 1070-5325, 1099-1506 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1070-5325 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Numerical Linear Algebra with Applications |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nla.70049 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Numerical Linear Algebra with Applications |
| primary_location.landing_page_url | https://doi.org/10.1002/nla.70049 |
| publication_date | 2025-11-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2339590407, https://openalex.org/W1998906317, https://openalex.org/W2964332084, https://openalex.org/W2898943945, https://openalex.org/W2011718397, https://openalex.org/W1989455457, https://openalex.org/W2089309544, https://openalex.org/W1987374018, https://openalex.org/W2233270135, https://openalex.org/W2035695022, https://openalex.org/W2141339934, https://openalex.org/W1996398591, https://openalex.org/W2099753835, https://openalex.org/W2072576437, https://openalex.org/W1480013407, https://openalex.org/W2018970672, https://openalex.org/W2073628986, https://openalex.org/W3093315405, https://openalex.org/W4231150350, https://openalex.org/W1980019387, https://openalex.org/W2047610878, https://openalex.org/W2095420020, https://openalex.org/W2052280672, https://openalex.org/W2117756735, https://openalex.org/W2064980127, https://openalex.org/W2921480401, https://openalex.org/W3106178956, https://openalex.org/W2147542748, https://openalex.org/W2141870784, https://openalex.org/W2077962987, https://openalex.org/W2033598192, https://openalex.org/W4406497389, https://openalex.org/W2962958189, https://openalex.org/W1569743469 |
| referenced_works_count | 34 |
| abstract_inverted_index.A | 70 |
| abstract_inverted_index.a | 11, 46, 59, 85, 92, 107, 122, 181 |
| abstract_inverted_index.3D | 135 |
| abstract_inverted_index.An | 112 |
| abstract_inverted_index.In | 43, 139 |
| abstract_inverted_index.as | 91, 106 |
| abstract_inverted_index.be | 160 |
| abstract_inverted_index.in | 24, 180 |
| abstract_inverted_index.is | 55, 127 |
| abstract_inverted_index.of | 4, 39, 51, 72, 88, 114, 117, 124, 173 |
| abstract_inverted_index.on | 131 |
| abstract_inverted_index.to | 20, 32, 84, 104, 159, 164 |
| abstract_inverted_index.SVD | 48 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 169 |
| abstract_inverted_index.are | 18, 79, 82, 147, 157 |
| abstract_inverted_index.due | 163 |
| abstract_inverted_index.few | 186 |
| abstract_inverted_index.for | 121 |
| abstract_inverted_index.new | 119 |
| abstract_inverted_index.set | 71 |
| abstract_inverted_index.the | 37, 40, 52, 76, 99, 115, 118, 141, 151, 165, 170 |
| abstract_inverted_index.use | 90, 105 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.also | 148 |
| abstract_inverted_index.band | 38 |
| abstract_inverted_index.from | 134 |
| abstract_inverted_index.more | 62 |
| abstract_inverted_index.they | 156 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.upon | 98 |
| abstract_inverted_index.very | 185 |
| abstract_inverted_index.wide | 86 |
| abstract_inverted_index.with | 28, 66, 150 |
| abstract_inverted_index.Block | 101 |
| abstract_inverted_index.FEAST | 152 |
| abstract_inverted_index.SPIKE | 2, 142 |
| abstract_inverted_index.These | 81 |
| abstract_inverted_index.based | 49 |
| abstract_inverted_index.block | 12 |
| abstract_inverted_index.loose | 174 |
| abstract_inverted_index.range | 87 |
| abstract_inverted_index.rapid | 167 |
| abstract_inverted_index.shown | 158 |
| abstract_inverted_index.small | 34 |
| abstract_inverted_index.using | 10 |
| abstract_inverted_index.where | 155 |
| abstract_inverted_index.which | 61, 95, 183 |
| abstract_inverted_index.work, | 45 |
| abstract_inverted_index.Jacobi | 102 |
| abstract_inverted_index.banded | 21 |
| abstract_inverted_index.bands. | 69 |
| abstract_inverted_index.blocks | 27, 54 |
| abstract_inverted_index.direct | 110 |
| abstract_inverted_index.family | 3 |
| abstract_inverted_index.finite | 136 |
| abstract_inverted_index.large, | 67 |
| abstract_inverted_index.linear | 5, 144, 175 |
| abstract_inverted_index.paired | 149 |
| abstract_inverted_index.solver | 177, 187 |
| abstract_inverted_index.sparse | 68 |
| abstract_inverted_index.system | 6, 145, 176 |
| abstract_inverted_index.applied | 19 |
| abstract_inverted_index.classic | 100 |
| abstract_inverted_index.derived | 133 |
| abstract_inverted_index.element | 137 |
| abstract_inverted_index.handles | 64 |
| abstract_inverted_index.matrix. | 42 |
| abstract_inverted_index.solver, | 154 |
| abstract_inverted_index.solvers | 7, 17, 146 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.elements | 30 |
| abstract_inverted_index.flexible | 73 |
| abstract_inverted_index.focusing | 130 |
| abstract_inverted_index.former's | 166 |
| abstract_inverted_index.improves | 97 |
| abstract_inverted_index.latter's | 171 |
| abstract_inverted_index.matrices | 65, 126, 132 |
| abstract_inverted_index.nonzeros | 29 |
| abstract_inverted_index.original | 41 |
| abstract_inverted_index.produces | 58 |
| abstract_inverted_index.provides | 8 |
| abstract_inverted_index.requires | 184 |
| abstract_inverted_index.solvers, | 75 |
| abstract_inverted_index.systems, | 22 |
| abstract_inverted_index.Typically | 15 |
| abstract_inverted_index.addition, | 140 |
| abstract_inverted_index.effective | 162 |
| abstract_inverted_index.resulting | 23, 179 |
| abstract_inverted_index.selection | 123 |
| abstract_inverted_index.variants, | 78 |
| abstract_inverted_index.LR‐SPIKE | 77 |
| abstract_inverted_index.acceptance | 172 |
| abstract_inverted_index.applicable | 83 |
| abstract_inverted_index.comprising | 36 |
| abstract_inverted_index.eigenvalue | 153 |
| abstract_inverted_index.low‐rank | 47 |
| abstract_inverted_index.performed, | 128 |
| abstract_inverted_index.relatively | 33 |
| abstract_inverted_index.restricted | 31 |
| abstract_inverted_index.solver.” | 111 |
| abstract_inverted_index.structured | 25 |
| abstract_inverted_index.SuiteSparse | 125 |
| abstract_inverted_index.approximate | 143 |
| abstract_inverted_index.combination | 182 |
| abstract_inverted_index.distributed | 74 |
| abstract_inverted_index.effectively | 63 |
| abstract_inverted_index.iterations. | 188 |
| abstract_inverted_index.parallelism | 9 |
| abstract_inverted_index.specialized | 108 |
| abstract_inverted_index.submatrices | 35 |
| abstract_inverted_index.tridiagonal | 13 |
| abstract_inverted_index.convergence, | 168, 178 |
| abstract_inverted_index.implemented. | 80 |
| abstract_inverted_index.particularly | 129, 161 |
| abstract_inverted_index.simulations. | 138 |
| abstract_inverted_index.SPIKE‐based | 16 |
| abstract_inverted_index.approximation | 50 |
| abstract_inverted_index.effectiveness | 116 |
| abstract_inverted_index.investigated. | 56 |
| abstract_inverted_index.investigation | 113 |
| abstract_inverted_index.partitioning. | 14 |
| abstract_inverted_index.off‐diagonal | 26, 53 |
| abstract_inverted_index.preconditioner | 94 |
| abstract_inverted_index.representation | 60 |
| abstract_inverted_index.“approximate | 109 |
| abstract_inverted_index.preconditioner, | 103 |
| abstract_inverted_index.preconditioners | 120 |
| abstract_inverted_index.straightforwardly | 96 |
| abstract_inverted_index.“black‐box” | 93 |
| abstract_inverted_index.applications—from | 89 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5047760188 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I24603500 |
| citation_normalized_percentile |