LPD: Learnable Prototypes with Diversity Regularization for Weakly Supervised Histopathology Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2512.05922
Weakly supervised semantic segmentation (WSSS) in histopathology reduces pixel-level labeling by learning from image-level labels, but it is hindered by inter-class homogeneity, intra-class heterogeneity, and CAM-induced region shrinkage (global pooling-based class activation maps whose activations highlight only the most distinctive areas and miss nearby class regions). Recent works address these challenges by constructing a clustering prototype bank and then refining masks in a separate stage; however, such two-stage pipelines are costly, sensitive to hyperparameters, and decouple prototype discovery from segmentation learning, limiting their effectiveness and efficiency. We propose a cluster-free, one-stage learnable-prototype framework with diversity regularization to enhance morphological intra-class heterogeneity coverage. Our approach achieves state-of-the-art (SOTA) performance on BCSS-WSSS, outperforming prior methods in mIoU and mDice. Qualitative segmentation maps show sharper boundaries and fewer mislabels, and activation heatmaps further reveal that, compared with clustering-based prototypes, our learnable prototypes cover more diverse and complementary regions within each class, providing consistent qualitative evidence for their effectiveness.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2512.05922
- https://arxiv.org/pdf/2512.05922
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417144663
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417144663Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.05922Digital Object Identifier
- Title
-
LPD: Learnable Prototypes with Diversity Regularization for Weakly Supervised Histopathology SegmentationWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-05Full publication date if available
- Authors
-
Khang Le, Tuan A. Vu, Ha Thach, Ngoc Bui Lam Quang, Thanh-Huy Nguyen, Minh Hoang Le, Zhu Han, Chandra Mohan, Hien Van NguyenList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.05922Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.05922Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.05922Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417144663 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.05922 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.05922 |
| ids.openalex | https://openalex.org/W4417144663 |
| fwci | |
| type | preprint |
| title | LPD: Learnable Prototypes with Diversity Regularization for Weakly Supervised Histopathology Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.05922 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.05922 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.05922 |
| locations[1].id | doi:10.48550/arxiv.2512.05922 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2512.05922 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5104006945 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Khang Le |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Le, Khang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041664690 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5546-4422 |
| authorships[1].author.display_name | Tuan A. Vu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vu, Anh Mai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030294531 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ha Thach |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Thach, Ha |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101173242 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ngoc Bui Lam Quang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Quang, Ngoc Bui Lam |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103260009 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-9355-5434 |
| authorships[4].author.display_name | Thanh-Huy Nguyen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nguyen, Thanh-Huy |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5048194853 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0908-1188 |
| authorships[5].author.display_name | Minh Hoang Le |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Le, Minh H. N. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5063667378 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6606-5822 |
| authorships[6].author.display_name | Zhu Han |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Han, Zhu |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5042585597 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7896-5740 |
| authorships[7].author.display_name | Chandra Mohan |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Mohan, Chandra |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5101985554 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-7280-2182 |
| authorships[8].author.display_name | Hien Van Nguyen |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Van Nguyen, Hien |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.05922 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-09T00:00:00 |
| display_name | LPD: Learnable Prototypes with Diversity Regularization for Weakly Supervised Histopathology Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:49:46.989445 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.05922 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.05922 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.05922 |
| primary_location.id | pmh:oai:arXiv.org:2512.05922 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.05922 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.05922 |
| publication_date | 2025-12-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 53, 62, 88 |
| abstract_inverted_index.We | 86 |
| abstract_inverted_index.by | 10, 19, 51 |
| abstract_inverted_index.in | 5, 61, 113 |
| abstract_inverted_index.is | 17 |
| abstract_inverted_index.it | 16 |
| abstract_inverted_index.on | 108 |
| abstract_inverted_index.to | 72, 96 |
| abstract_inverted_index.Our | 102 |
| abstract_inverted_index.and | 24, 41, 57, 74, 84, 115, 123, 126, 142 |
| abstract_inverted_index.are | 69 |
| abstract_inverted_index.but | 15 |
| abstract_inverted_index.for | 152 |
| abstract_inverted_index.our | 136 |
| abstract_inverted_index.the | 37 |
| abstract_inverted_index.bank | 56 |
| abstract_inverted_index.each | 146 |
| abstract_inverted_index.from | 12, 78 |
| abstract_inverted_index.mIoU | 114 |
| abstract_inverted_index.maps | 32, 119 |
| abstract_inverted_index.miss | 42 |
| abstract_inverted_index.more | 140 |
| abstract_inverted_index.most | 38 |
| abstract_inverted_index.only | 36 |
| abstract_inverted_index.show | 120 |
| abstract_inverted_index.such | 66 |
| abstract_inverted_index.then | 58 |
| abstract_inverted_index.with | 93, 133 |
| abstract_inverted_index.areas | 40 |
| abstract_inverted_index.class | 30, 44 |
| abstract_inverted_index.cover | 139 |
| abstract_inverted_index.fewer | 124 |
| abstract_inverted_index.masks | 60 |
| abstract_inverted_index.prior | 111 |
| abstract_inverted_index.that, | 131 |
| abstract_inverted_index.their | 82, 153 |
| abstract_inverted_index.these | 49 |
| abstract_inverted_index.whose | 33 |
| abstract_inverted_index.works | 47 |
| abstract_inverted_index.(SOTA) | 106 |
| abstract_inverted_index.(WSSS) | 4 |
| abstract_inverted_index.Recent | 46 |
| abstract_inverted_index.Weakly | 0 |
| abstract_inverted_index.class, | 147 |
| abstract_inverted_index.mDice. | 116 |
| abstract_inverted_index.nearby | 43 |
| abstract_inverted_index.region | 26 |
| abstract_inverted_index.reveal | 130 |
| abstract_inverted_index.stage; | 64 |
| abstract_inverted_index.within | 145 |
| abstract_inverted_index.(global | 28 |
| abstract_inverted_index.address | 48 |
| abstract_inverted_index.costly, | 70 |
| abstract_inverted_index.diverse | 141 |
| abstract_inverted_index.enhance | 97 |
| abstract_inverted_index.further | 129 |
| abstract_inverted_index.labels, | 14 |
| abstract_inverted_index.methods | 112 |
| abstract_inverted_index.propose | 87 |
| abstract_inverted_index.reduces | 7 |
| abstract_inverted_index.regions | 144 |
| abstract_inverted_index.sharper | 121 |
| abstract_inverted_index.achieves | 104 |
| abstract_inverted_index.approach | 103 |
| abstract_inverted_index.compared | 132 |
| abstract_inverted_index.decouple | 75 |
| abstract_inverted_index.evidence | 151 |
| abstract_inverted_index.heatmaps | 128 |
| abstract_inverted_index.hindered | 18 |
| abstract_inverted_index.however, | 65 |
| abstract_inverted_index.labeling | 9 |
| abstract_inverted_index.learning | 11 |
| abstract_inverted_index.limiting | 81 |
| abstract_inverted_index.refining | 59 |
| abstract_inverted_index.semantic | 2 |
| abstract_inverted_index.separate | 63 |
| abstract_inverted_index.coverage. | 101 |
| abstract_inverted_index.discovery | 77 |
| abstract_inverted_index.diversity | 94 |
| abstract_inverted_index.framework | 92 |
| abstract_inverted_index.highlight | 35 |
| abstract_inverted_index.learnable | 137 |
| abstract_inverted_index.learning, | 80 |
| abstract_inverted_index.one-stage | 90 |
| abstract_inverted_index.pipelines | 68 |
| abstract_inverted_index.prototype | 55, 76 |
| abstract_inverted_index.providing | 148 |
| abstract_inverted_index.regions). | 45 |
| abstract_inverted_index.sensitive | 71 |
| abstract_inverted_index.shrinkage | 27 |
| abstract_inverted_index.two-stage | 67 |
| abstract_inverted_index.BCSS-WSSS, | 109 |
| abstract_inverted_index.activation | 31, 127 |
| abstract_inverted_index.boundaries | 122 |
| abstract_inverted_index.challenges | 50 |
| abstract_inverted_index.clustering | 54 |
| abstract_inverted_index.consistent | 149 |
| abstract_inverted_index.mislabels, | 125 |
| abstract_inverted_index.prototypes | 138 |
| abstract_inverted_index.supervised | 1 |
| abstract_inverted_index.CAM-induced | 25 |
| abstract_inverted_index.Qualitative | 117 |
| abstract_inverted_index.activations | 34 |
| abstract_inverted_index.distinctive | 39 |
| abstract_inverted_index.efficiency. | 85 |
| abstract_inverted_index.image-level | 13 |
| abstract_inverted_index.inter-class | 20 |
| abstract_inverted_index.intra-class | 22, 99 |
| abstract_inverted_index.performance | 107 |
| abstract_inverted_index.pixel-level | 8 |
| abstract_inverted_index.prototypes, | 135 |
| abstract_inverted_index.qualitative | 150 |
| abstract_inverted_index.constructing | 52 |
| abstract_inverted_index.homogeneity, | 21 |
| abstract_inverted_index.segmentation | 3, 79, 118 |
| abstract_inverted_index.cluster-free, | 89 |
| abstract_inverted_index.complementary | 143 |
| abstract_inverted_index.effectiveness | 83 |
| abstract_inverted_index.heterogeneity | 100 |
| abstract_inverted_index.morphological | 98 |
| abstract_inverted_index.outperforming | 110 |
| abstract_inverted_index.pooling-based | 29 |
| abstract_inverted_index.effectiveness. | 154 |
| abstract_inverted_index.heterogeneity, | 23 |
| abstract_inverted_index.histopathology | 6 |
| abstract_inverted_index.regularization | 95 |
| abstract_inverted_index.clustering-based | 134 |
| abstract_inverted_index.hyperparameters, | 73 |
| abstract_inverted_index.state-of-the-art | 105 |
| abstract_inverted_index.learnable-prototype | 91 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |