Lsrl-Net: A Level Set-Guided Re-Learning Network for Semi-Supervised Cardiac and Prostate Segmentation Article Swipe
Ruihua Liu
,
James C. Liao
,
Xinyu Liu
,
Yanwei Liu
,
Yijie Chen
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5113666
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5113666
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5113666
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407024745
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407024745Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5113666Digital Object Identifier
- Title
-
Lsrl-Net: A Level Set-Guided Re-Learning Network for Semi-Supervised Cardiac and Prostate SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Ruihua Liu, James C. Liao, Xinyu Liu, Yanwei Liu, Yijie ChenList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5113666Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5113666Direct OA link when available
- Concepts
-
Segmentation, Set (abstract data type), Computer science, Net (polyhedron), Artificial intelligence, Prostate, Medicine, Internal medicine, Mathematics, Geometry, Programming language, CancerTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407024745 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5113666 |
| ids.doi | https://doi.org/10.2139/ssrn.5113666 |
| ids.openalex | https://openalex.org/W4407024745 |
| fwci | 0.0 |
| type | preprint |
| title | Lsrl-Net: A Level Set-Guided Re-Learning Network for Semi-Supervised Cardiac and Prostate Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14510 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9351999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Medical Imaging and Analysis |
| topics[1].id | https://openalex.org/T11438 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9122999906539917 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Retinal Imaging and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6187912225723267 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C177264268 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5382890701293945 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[1].display_name | Set (abstract data type) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5323389768600464 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C14166107 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5122391581535339 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q253829 |
| concepts[3].display_name | Net (polyhedron) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4906059801578522 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2776235491 |
| concepts[5].level | 3 |
| concepts[5].score | 0.485578715801239 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9625 |
| concepts[5].display_name | Prostate |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.27245479822158813 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C126322002 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1672213077545166 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[7].display_name | Internal medicine |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.12469953298568726 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| concepts[11].id | https://openalex.org/C121608353 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[11].display_name | Cancer |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.6187912225723267 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/set |
| keywords[1].score | 0.5382890701293945 |
| keywords[1].display_name | Set (abstract data type) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5323389768600464 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/net |
| keywords[3].score | 0.5122391581535339 |
| keywords[3].display_name | Net (polyhedron) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4906059801578522 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/prostate |
| keywords[5].score | 0.485578715801239 |
| keywords[5].display_name | Prostate |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.27245479822158813 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/internal-medicine |
| keywords[7].score | 0.1672213077545166 |
| keywords[7].display_name | Internal medicine |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.12469953298568726 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5113666 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5113666 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101528742 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5939-1964 |
| authorships[0].author.display_name | Ruihua Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruihua Liu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5007847950 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4580-7276 |
| authorships[1].author.display_name | James C. Liao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiangyu Liao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100446430 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3527-6168 |
| authorships[2].author.display_name | Xinyu Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinyu Liu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100720129 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0626-1901 |
| authorships[3].author.display_name | Yanwei Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yanwei Liu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101982343 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9477-5058 |
| authorships[4].author.display_name | Yijie Chen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yijie Chen |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5113666 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Lsrl-Net: A Level Set-Guided Re-Learning Network for Semi-Supervised Cardiac and Prostate Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14510 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9351999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Medical Imaging and Analysis |
| related_works | https://openalex.org/W2912321008, https://openalex.org/W1998607122, https://openalex.org/W2324368075, https://openalex.org/W2972124131, https://openalex.org/W338149487, https://openalex.org/W4403012196, https://openalex.org/W2972032537, https://openalex.org/W150363521, https://openalex.org/W3154107650, https://openalex.org/W2613671004 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5113666 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5113666 |
| primary_location.id | doi:10.2139/ssrn.5113666 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5113666 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.03072499 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |