LungNoduleAgent: A Collaborative Multi-Agent System for Precision Diagnosis of Lung Nodules Article Swipe
YOU?
·
· 2025
· Open Access
·
Diagnosing lung cancer typically involves physicians identifying lung nodules in Computed tomography (CT) scans and generating diagnostic reports based on their morphological features and medical expertise. Although advancements have been made in using multimodal large language models for analyzing lung CT scans, challenges remain in accurately describing nodule morphology and incorporating medical expertise. These limitations affect the reliability and effectiveness of these models in clinical settings. Collaborative multi-agent systems offer a promising strategy for achieving a balance between generality and precision in medical applications, yet their potential in pathology has not been thoroughly explored. To bridge these gaps, we introduce LungNoduleAgent, an innovative collaborative multi-agent system specifically designed for analyzing lung CT scans. LungNoduleAgent streamlines the diagnostic process into sequential components, improving precision in describing nodules and grading malignancy through three primary modules. The first module, the Nodule Spotter, coordinates clinical detection models to accurately identify nodules. The second module, the Radiologist, integrates localized image description techniques to produce comprehensive CT reports. Finally, the Doctor Agent System performs malignancy reasoning by using images and CT reports, supported by a pathology knowledge base and a multi-agent system framework. Extensive testing on two private datasets and the public LIDC-IDRI dataset indicates that LungNoduleAgent surpasses mainstream vision-language models, agent systems, and advanced expert models. These results highlight the importance of region-level semantic alignment and multi-agent collaboration in diagnosing nodules. LungNoduleAgent stands out as a promising foundational tool for supporting clinical analyses of lung nodules.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2511.21042
- https://arxiv.org/pdf/2511.21042
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106862790
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106862790Canonical identifier for this work in OpenAlex
- Title
-
LungNoduleAgent: A Collaborative Multi-Agent System for Precision Diagnosis of Lung NodulesWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-26Full publication date if available
- Authors
-
Yang Cheng, Jin Hui, Yu Xinlei, Wang Zhipeng, Liu Yao-qun, Fan FengLei, Lei Dajiang, Jia Gangyong, Wang Changmiao, Ge, RuiquanList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.21042Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.21042Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.21042Direct OA link when available
- Concepts
-
Computer science, Medical physics, Lung cancer, Radiology, Medical imaging, Artificial intelligence, Medicine, Grading (engineering), Computed tomography, Knowledge base, Clinical Practice, Malignancy, Solitary pulmonary nodule, Precision medicine, Lung, Radiomics, Radiation treatment planning, Nodule (geology), Process (computing), Context (archaeology), Property (philosophy)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106862790 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7106862790 |
| fwci | 0.0 |
| type | article |
| title | LungNoduleAgent: A Collaborative Multi-Agent System for Precision Diagnosis of Lung Nodules |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10202 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.8333294987678528 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Lung Cancer Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.02724142000079155 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.02439935691654682 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5056953430175781 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C19527891 |
| concepts[1].level | 1 |
| concepts[1].score | 0.47103288769721985 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[1].display_name | Medical physics |
| concepts[2].id | https://openalex.org/C2776256026 |
| concepts[2].level | 2 |
| concepts[2].score | 0.46953141689300537 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q47912 |
| concepts[2].display_name | Lung cancer |
| concepts[3].id | https://openalex.org/C126838900 |
| concepts[3].level | 1 |
| concepts[3].score | 0.46840161085128784 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[3].display_name | Radiology |
| concepts[4].id | https://openalex.org/C31601959 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4644356667995453 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[4].display_name | Medical imaging |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4066373407840729 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.39373213052749634 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C2777286243 |
| concepts[7].level | 2 |
| concepts[7].score | 0.39039501547813416 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5591926 |
| concepts[7].display_name | Grading (engineering) |
| concepts[8].id | https://openalex.org/C544519230 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3758733868598938 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q32566 |
| concepts[8].display_name | Computed tomography |
| concepts[9].id | https://openalex.org/C4554734 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3689655363559723 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q593744 |
| concepts[9].display_name | Knowledge base |
| concepts[10].id | https://openalex.org/C2779974597 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3444729745388031 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q28448986 |
| concepts[10].display_name | Clinical Practice |
| concepts[11].id | https://openalex.org/C2779399171 |
| concepts[11].level | 2 |
| concepts[11].score | 0.33746081590652466 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1483951 |
| concepts[11].display_name | Malignancy |
| concepts[12].id | https://openalex.org/C2780244788 |
| concepts[12].level | 3 |
| concepts[12].score | 0.30970653891563416 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1877474 |
| concepts[12].display_name | Solitary pulmonary nodule |
| concepts[13].id | https://openalex.org/C163763905 |
| concepts[13].level | 2 |
| concepts[13].score | 0.30911457538604736 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q17075943 |
| concepts[13].display_name | Precision medicine |
| concepts[14].id | https://openalex.org/C2777714996 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3032669723033905 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7886 |
| concepts[14].display_name | Lung |
| concepts[15].id | https://openalex.org/C2778559731 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2961258590221405 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23808793 |
| concepts[15].display_name | Radiomics |
| concepts[16].id | https://openalex.org/C201645570 |
| concepts[16].level | 3 |
| concepts[16].score | 0.2935672700405121 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q830637 |
| concepts[16].display_name | Radiation treatment planning |
| concepts[17].id | https://openalex.org/C2776731575 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2850601077079773 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2916245 |
| concepts[17].display_name | Nodule (geology) |
| concepts[18].id | https://openalex.org/C98045186 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2743733823299408 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[18].display_name | Process (computing) |
| concepts[19].id | https://openalex.org/C2779343474 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2595875859260559 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[19].display_name | Context (archaeology) |
| concepts[20].id | https://openalex.org/C189950617 |
| concepts[20].level | 2 |
| concepts[20].score | 0.25377950072288513 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q937228 |
| concepts[20].display_name | Property (philosophy) |
| keywords[0].id | https://openalex.org/keywords/lung-cancer |
| keywords[0].score | 0.46953141689300537 |
| keywords[0].display_name | Lung cancer |
| keywords[1].id | https://openalex.org/keywords/medical-imaging |
| keywords[1].score | 0.4644356667995453 |
| keywords[1].display_name | Medical imaging |
| keywords[2].id | https://openalex.org/keywords/grading |
| keywords[2].score | 0.39039501547813416 |
| keywords[2].display_name | Grading (engineering) |
| keywords[3].id | https://openalex.org/keywords/computed-tomography |
| keywords[3].score | 0.3758733868598938 |
| keywords[3].display_name | Computed tomography |
| keywords[4].id | https://openalex.org/keywords/knowledge-base |
| keywords[4].score | 0.3689655363559723 |
| keywords[4].display_name | Knowledge base |
| keywords[5].id | https://openalex.org/keywords/clinical-practice |
| keywords[5].score | 0.3444729745388031 |
| keywords[5].display_name | Clinical Practice |
| keywords[6].id | https://openalex.org/keywords/malignancy |
| keywords[6].score | 0.33746081590652466 |
| keywords[6].display_name | Malignancy |
| keywords[7].id | https://openalex.org/keywords/solitary-pulmonary-nodule |
| keywords[7].score | 0.30970653891563416 |
| keywords[7].display_name | Solitary pulmonary nodule |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.21042 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.21042 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.21042 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A2065589776 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5356-043X |
| authorships[0].author.display_name | Yang Cheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Cheng |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2021428913 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0970-5133 |
| authorships[1].author.display_name | Jin Hui |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jin, Hui |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A3098289804 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yu Xinlei |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu, Xinlei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A1942493166 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Wang Zhipeng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Zhipeng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A2378464818 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Liu Yao-qun |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Yaoqun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A1579626112 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Fan FengLei |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Fan, Fenglei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A2361810873 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Lei Dajiang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Lei, Dajiang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A3004108621 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Jia Gangyong |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jia, Gangyong |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A2381073526 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Wang Changmiao |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Wang, Changmiao |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A4284436969 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Ge, Ruiquan |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Ge, Ruiquan |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.21042 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | LungNoduleAgent: A Collaborative Multi-Agent System for Precision Diagnosis of Lung Nodules |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T23:14:17.795251 |
| primary_topic.id | https://openalex.org/T10202 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.8333294987678528 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Lung Cancer Diagnosis and Treatment |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.21042 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.21042 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.21042 |
| primary_location.id | pmh:oai:arXiv.org:2511.21042 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.21042 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.21042 |
| publication_date | 2025-11-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 70, 75, 178, 183, 230 |
| abstract_inverted_index.CT | 40, 111, 160, 174 |
| abstract_inverted_index.To | 94 |
| abstract_inverted_index.an | 101 |
| abstract_inverted_index.as | 229 |
| abstract_inverted_index.by | 170, 177 |
| abstract_inverted_index.in | 9, 31, 44, 63, 81, 87, 123, 223 |
| abstract_inverted_index.of | 60, 216, 238 |
| abstract_inverted_index.on | 19, 189 |
| abstract_inverted_index.to | 143, 157 |
| abstract_inverted_index.we | 98 |
| abstract_inverted_index.The | 133, 147 |
| abstract_inverted_index.and | 14, 23, 49, 58, 79, 126, 173, 182, 193, 207, 220 |
| abstract_inverted_index.for | 37, 73, 108, 234 |
| abstract_inverted_index.has | 89 |
| abstract_inverted_index.not | 90 |
| abstract_inverted_index.out | 228 |
| abstract_inverted_index.the | 56, 115, 136, 150, 163, 194, 214 |
| abstract_inverted_index.two | 190 |
| abstract_inverted_index.yet | 84 |
| abstract_inverted_index.(CT) | 12 |
| abstract_inverted_index.base | 181 |
| abstract_inverted_index.been | 29, 91 |
| abstract_inverted_index.have | 28 |
| abstract_inverted_index.into | 118 |
| abstract_inverted_index.lung | 1, 7, 39, 110, 239 |
| abstract_inverted_index.made | 30 |
| abstract_inverted_index.that | 199 |
| abstract_inverted_index.tool | 233 |
| abstract_inverted_index.Agent | 165 |
| abstract_inverted_index.These | 53, 211 |
| abstract_inverted_index.agent | 205 |
| abstract_inverted_index.based | 18 |
| abstract_inverted_index.first | 134 |
| abstract_inverted_index.gaps, | 97 |
| abstract_inverted_index.image | 154 |
| abstract_inverted_index.large | 34 |
| abstract_inverted_index.offer | 69 |
| abstract_inverted_index.scans | 13 |
| abstract_inverted_index.their | 20, 85 |
| abstract_inverted_index.these | 61, 96 |
| abstract_inverted_index.three | 130 |
| abstract_inverted_index.using | 32, 171 |
| abstract_inverted_index.Doctor | 164 |
| abstract_inverted_index.Nodule | 137 |
| abstract_inverted_index.System | 166 |
| abstract_inverted_index.affect | 55 |
| abstract_inverted_index.bridge | 95 |
| abstract_inverted_index.cancer | 2 |
| abstract_inverted_index.expert | 209 |
| abstract_inverted_index.images | 172 |
| abstract_inverted_index.models | 36, 62, 142 |
| abstract_inverted_index.nodule | 47 |
| abstract_inverted_index.public | 195 |
| abstract_inverted_index.remain | 43 |
| abstract_inverted_index.scans, | 41 |
| abstract_inverted_index.scans. | 112 |
| abstract_inverted_index.second | 148 |
| abstract_inverted_index.stands | 227 |
| abstract_inverted_index.system | 105, 185 |
| abstract_inverted_index.balance | 76 |
| abstract_inverted_index.between | 77 |
| abstract_inverted_index.dataset | 197 |
| abstract_inverted_index.grading | 127 |
| abstract_inverted_index.medical | 24, 51, 82 |
| abstract_inverted_index.models, | 204 |
| abstract_inverted_index.models. | 210 |
| abstract_inverted_index.module, | 135, 149 |
| abstract_inverted_index.nodules | 8, 125 |
| abstract_inverted_index.primary | 131 |
| abstract_inverted_index.private | 191 |
| abstract_inverted_index.process | 117 |
| abstract_inverted_index.produce | 158 |
| abstract_inverted_index.reports | 17 |
| abstract_inverted_index.results | 212 |
| abstract_inverted_index.systems | 68 |
| abstract_inverted_index.testing | 188 |
| abstract_inverted_index.through | 129 |
| abstract_inverted_index.Although | 26 |
| abstract_inverted_index.Computed | 10 |
| abstract_inverted_index.Finally, | 162 |
| abstract_inverted_index.Spotter, | 138 |
| abstract_inverted_index.advanced | 208 |
| abstract_inverted_index.analyses | 237 |
| abstract_inverted_index.clinical | 64, 140, 236 |
| abstract_inverted_index.datasets | 192 |
| abstract_inverted_index.designed | 107 |
| abstract_inverted_index.features | 22 |
| abstract_inverted_index.identify | 145 |
| abstract_inverted_index.involves | 4 |
| abstract_inverted_index.language | 35 |
| abstract_inverted_index.modules. | 132 |
| abstract_inverted_index.nodules. | 146, 225, 240 |
| abstract_inverted_index.performs | 167 |
| abstract_inverted_index.reports, | 175 |
| abstract_inverted_index.reports. | 161 |
| abstract_inverted_index.semantic | 218 |
| abstract_inverted_index.strategy | 72 |
| abstract_inverted_index.systems, | 206 |
| abstract_inverted_index.Extensive | 187 |
| abstract_inverted_index.LIDC-IDRI | 196 |
| abstract_inverted_index.achieving | 74 |
| abstract_inverted_index.alignment | 219 |
| abstract_inverted_index.analyzing | 38, 109 |
| abstract_inverted_index.detection | 141 |
| abstract_inverted_index.explored. | 93 |
| abstract_inverted_index.highlight | 213 |
| abstract_inverted_index.improving | 121 |
| abstract_inverted_index.indicates | 198 |
| abstract_inverted_index.introduce | 99 |
| abstract_inverted_index.knowledge | 180 |
| abstract_inverted_index.localized | 153 |
| abstract_inverted_index.pathology | 88, 179 |
| abstract_inverted_index.potential | 86 |
| abstract_inverted_index.precision | 80, 122 |
| abstract_inverted_index.promising | 71, 231 |
| abstract_inverted_index.reasoning | 169 |
| abstract_inverted_index.settings. | 65 |
| abstract_inverted_index.supported | 176 |
| abstract_inverted_index.surpasses | 201 |
| abstract_inverted_index.typically | 3 |
| abstract_inverted_index.Diagnosing | 0 |
| abstract_inverted_index.accurately | 45, 144 |
| abstract_inverted_index.challenges | 42 |
| abstract_inverted_index.describing | 46, 124 |
| abstract_inverted_index.diagnosing | 224 |
| abstract_inverted_index.diagnostic | 16, 116 |
| abstract_inverted_index.expertise. | 25, 52 |
| abstract_inverted_index.framework. | 186 |
| abstract_inverted_index.generality | 78 |
| abstract_inverted_index.generating | 15 |
| abstract_inverted_index.importance | 215 |
| abstract_inverted_index.innovative | 102 |
| abstract_inverted_index.integrates | 152 |
| abstract_inverted_index.mainstream | 202 |
| abstract_inverted_index.malignancy | 128, 168 |
| abstract_inverted_index.morphology | 48 |
| abstract_inverted_index.multimodal | 33 |
| abstract_inverted_index.physicians | 5 |
| abstract_inverted_index.sequential | 119 |
| abstract_inverted_index.supporting | 235 |
| abstract_inverted_index.techniques | 156 |
| abstract_inverted_index.thoroughly | 92 |
| abstract_inverted_index.tomography | 11 |
| abstract_inverted_index.components, | 120 |
| abstract_inverted_index.coordinates | 139 |
| abstract_inverted_index.description | 155 |
| abstract_inverted_index.identifying | 6 |
| abstract_inverted_index.limitations | 54 |
| abstract_inverted_index.multi-agent | 67, 104, 184, 221 |
| abstract_inverted_index.reliability | 57 |
| abstract_inverted_index.streamlines | 114 |
| abstract_inverted_index.Radiologist, | 151 |
| abstract_inverted_index.advancements | 27 |
| abstract_inverted_index.foundational | 232 |
| abstract_inverted_index.region-level | 217 |
| abstract_inverted_index.specifically | 106 |
| abstract_inverted_index.Collaborative | 66 |
| abstract_inverted_index.applications, | 83 |
| abstract_inverted_index.collaboration | 222 |
| abstract_inverted_index.collaborative | 103 |
| abstract_inverted_index.comprehensive | 159 |
| abstract_inverted_index.effectiveness | 59 |
| abstract_inverted_index.incorporating | 50 |
| abstract_inverted_index.morphological | 21 |
| abstract_inverted_index.LungNoduleAgent | 113, 200, 226 |
| abstract_inverted_index.vision-language | 203 |
| abstract_inverted_index.LungNoduleAgent, | 100 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.81633577 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |