Lymph Node Gross Tumor Volume Detection and Segmentation via Distance-based Gating using 3D CT/PET Imaging in Radiotherapy Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2008.11870
Finding, identifying and segmenting suspicious cancer metastasized lymph nodes from 3D multi-modality imaging is a clinical task of paramount importance. In radiotherapy, they are referred to as Lymph Node Gross Tumor Volume (GTVLN). Determining and delineating the spread of GTVLN is essential in defining the corresponding resection and irradiating regions for the downstream workflows of surgical resection and radiotherapy of various cancers. In this work, we propose an effective distance-based gating approach to simulate and simplify the high-level reasoning protocols conducted by radiation oncologists, in a divide-and-conquer manner. GTVLN is divided into two subgroups of tumor-proximal and tumor-distal, respectively, by means of binary or soft distance gating. This is motivated by the observation that each category can have distinct though overlapping distributions of appearance, size and other LN characteristics. A novel multi-branch detection-by-segmentation network is trained with each branch specializing on learning one GTVLN category features, and outputs from multi-branch are fused in inference. The proposed method is evaluated on an in-house dataset of $141$ esophageal cancer patients with both PET and CT imaging modalities. Our results validate significant improvements on the mean recall from $72.5\%$ to $78.2\%$, as compared to previous state-of-the-art work. The highest achieved GTVLN recall of $82.5\%$ at $20\%$ precision is clinically relevant and valuable since human observers tend to have low sensitivity (around $80\%$ for the most experienced radiation oncologists, as reported by literature).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2008.11870
- https://arxiv.org/pdf/2008.11870
- OA Status
- green
- Cited By
- 3
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3080091890
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3080091890Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2008.11870Digital Object Identifier
- Title
-
Lymph Node Gross Tumor Volume Detection and Segmentation via Distance-based Gating using 3D CT/PET Imaging in RadiotherapyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-27Full publication date if available
- Authors
-
Zhuotun Zhu, Dakai Jin, Ke Yan, Tsung‐Ying Ho, Xianghua Ye, Dazhou Guo, Chun-Hung Chao, Jing Xiao, Alan Yuille, Le LüList of authors in order
- Landing page
-
https://arxiv.org/abs/2008.11870Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2008.11870Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2008.11870Direct OA link when available
- Concepts
-
Segmentation, Radiation therapy, Computer science, Lymph node, Artificial intelligence, Modality (human–computer interaction), Esophageal cancer, Medicine, Radiology, Medical imaging, Cancer, Pattern recognition (psychology), Pathology, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 2, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3080091890 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2008.11870 |
| ids.doi | https://doi.org/10.48550/arxiv.2008.11870 |
| ids.mag | 3080091890 |
| ids.openalex | https://openalex.org/W3080091890 |
| fwci | |
| type | preprint |
| title | Lymph Node Gross Tumor Volume Detection and Segmentation via Distance-based Gating using 3D CT/PET Imaging in Radiotherapy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10202 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9983999729156494 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Lung Cancer Diagnosis and Treatment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6848025321960449 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C509974204 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6022882461547852 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q180507 |
| concepts[1].display_name | Radiation therapy |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5700857043266296 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2780849966 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5250254273414612 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q170758 |
| concepts[3].display_name | Lymph node |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5206541419029236 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2780226545 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49537360668182373 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[5].display_name | Modality (human–computer interaction) |
| concepts[6].id | https://openalex.org/C2779742542 |
| concepts[6].level | 3 |
| concepts[6].score | 0.47515153884887695 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q372701 |
| concepts[6].display_name | Esophageal cancer |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.45661020278930664 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C126838900 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4344955086708069 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[8].display_name | Radiology |
| concepts[9].id | https://openalex.org/C31601959 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41907787322998047 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[9].display_name | Medical imaging |
| concepts[10].id | https://openalex.org/C121608353 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35068172216415405 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[10].display_name | Cancer |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.33842891454696655 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C142724271 |
| concepts[12].level | 1 |
| concepts[12].score | 0.16016951203346252 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[12].display_name | Pathology |
| concepts[13].id | https://openalex.org/C126322002 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[13].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.6848025321960449 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/radiation-therapy |
| keywords[1].score | 0.6022882461547852 |
| keywords[1].display_name | Radiation therapy |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5700857043266296 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/lymph-node |
| keywords[3].score | 0.5250254273414612 |
| keywords[3].display_name | Lymph node |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5206541419029236 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/modality |
| keywords[5].score | 0.49537360668182373 |
| keywords[5].display_name | Modality (human–computer interaction) |
| keywords[6].id | https://openalex.org/keywords/esophageal-cancer |
| keywords[6].score | 0.47515153884887695 |
| keywords[6].display_name | Esophageal cancer |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.45661020278930664 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/radiology |
| keywords[8].score | 0.4344955086708069 |
| keywords[8].display_name | Radiology |
| keywords[9].id | https://openalex.org/keywords/medical-imaging |
| keywords[9].score | 0.41907787322998047 |
| keywords[9].display_name | Medical imaging |
| keywords[10].id | https://openalex.org/keywords/cancer |
| keywords[10].score | 0.35068172216415405 |
| keywords[10].display_name | Cancer |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.33842891454696655 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/pathology |
| keywords[12].score | 0.16016951203346252 |
| keywords[12].display_name | Pathology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2008.11870 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2008.11870 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2008.11870 |
| locations[1].id | doi:10.48550/arxiv.2008.11870 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2008.11870 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5069972117 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhuotun Zhu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[0].affiliations[0].raw_affiliation_string | Johns Hopkins University, Baltimore MD, USA |
| authorships[0].affiliations[1].raw_affiliation_string | PAII Inc., Bethesda MD, USA |
| authorships[0].institutions[0].id | https://openalex.org/I145311948 |
| authorships[0].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Johns Hopkins University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhuotun Zhu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Johns Hopkins University, Baltimore MD, USA, PAII Inc., Bethesda MD, USA |
| authorships[1].author.id | https://openalex.org/A5027768127 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4806-2943 |
| authorships[1].author.display_name | Dakai Jin |
| authorships[1].affiliations[0].raw_affiliation_string | PAII Inc., Bethesda MD, USA |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dakai Jin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | PAII Inc., Bethesda MD, USA |
| authorships[2].author.id | https://openalex.org/A5101967245 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0034-9013 |
| authorships[2].author.display_name | Ke Yan |
| authorships[2].affiliations[0].raw_affiliation_string | PAII Inc., Bethesda MD, USA |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ke Yan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | PAII Inc., Bethesda MD, USA |
| authorships[3].author.id | https://openalex.org/A5072293450 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8468-2226 |
| authorships[3].author.display_name | Tsung‐Ying Ho |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3020100970 |
| authorships[3].affiliations[0].raw_affiliation_string | Chang Gung Memorial Hospital, Linkou, Taiwan, ROC |
| authorships[3].institutions[0].id | https://openalex.org/I3020100970 |
| authorships[3].institutions[0].ror | https://ror.org/02verss31 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I3020100970 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | Chang Gung Memorial Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tsung-Ying Ho |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chang Gung Memorial Hospital, Linkou, Taiwan, ROC |
| authorships[4].author.id | https://openalex.org/A5027212917 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4075-4777 |
| authorships[4].author.display_name | Xianghua Ye |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210166576 |
| authorships[4].affiliations[0].raw_affiliation_string | The First Affiliated Hospital Zhejiang University, Hangzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210166576 |
| authorships[4].institutions[0].ror | https://ror.org/05m1p5x56 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210166576 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | First Affiliated Hospital Zhejiang University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xianghua Ye |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The First Affiliated Hospital Zhejiang University, Hangzhou, China |
| authorships[5].author.id | https://openalex.org/A5016371650 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5591-6126 |
| authorships[5].author.display_name | Dazhou Guo |
| authorships[5].affiliations[0].raw_affiliation_string | PAII Inc., Bethesda MD, USA |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Dazhou Guo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | PAII Inc., Bethesda MD, USA |
| authorships[6].author.id | https://openalex.org/A5089227857 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Chun-Hung Chao |
| authorships[6].countries | TW |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I25846049 |
| authorships[6].affiliations[0].raw_affiliation_string | National Tsing Hua University, Hsinchu City, Taiwan, ROC |
| authorships[6].institutions[0].id | https://openalex.org/I25846049 |
| authorships[6].institutions[0].ror | https://ror.org/00zdnkx70 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I25846049 |
| authorships[6].institutions[0].country_code | TW |
| authorships[6].institutions[0].display_name | National Tsing Hua University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chun-Hung Chao |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | National Tsing Hua University, Hsinchu City, Taiwan, ROC |
| authorships[7].author.id | https://openalex.org/A5016038454 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9615-4749 |
| authorships[7].author.display_name | Jing Xiao |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4401726822 |
| authorships[7].affiliations[0].raw_affiliation_string | Ping An Technology, Shenzhen, China |
| authorships[7].institutions[0].id | https://openalex.org/I4401726822 |
| authorships[7].institutions[0].ror | https://ror.org/004yv2z91 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I4401726822 |
| authorships[7].institutions[0].country_code | |
| authorships[7].institutions[0].display_name | Ping An (China) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jing Xiao |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Ping An Technology, Shenzhen, China |
| authorships[8].author.id | https://openalex.org/A5086706224 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5207-9249 |
| authorships[8].author.display_name | Alan Yuille |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[8].affiliations[0].raw_affiliation_string | Johns Hopkins University, Baltimore MD, USA |
| authorships[8].institutions[0].id | https://openalex.org/I145311948 |
| authorships[8].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Johns Hopkins University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Alan Yuille |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Johns Hopkins University, Baltimore MD, USA |
| authorships[9].author.id | https://openalex.org/A5045227579 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-6799-9416 |
| authorships[9].author.display_name | Le Lü |
| authorships[9].affiliations[0].raw_affiliation_string | PAII Inc., Bethesda MD, USA |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Le Lu |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | PAII Inc., Bethesda MD, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2008.11870 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-09-01T00:00:00 |
| display_name | Lymph Node Gross Tumor Volume Detection and Segmentation via Distance-based Gating using 3D CT/PET Imaging in Radiotherapy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W2385859805, https://openalex.org/W2530972254, https://openalex.org/W2374013449, https://openalex.org/W73545470, https://openalex.org/W2350028111, https://openalex.org/W2887332714, https://openalex.org/W2364381299, https://openalex.org/W2374430585, https://openalex.org/W4379141755, https://openalex.org/W4367060753 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2008.11870 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2008.11870 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2008.11870 |
| primary_location.id | pmh:oai:arXiv.org:2008.11870 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2008.11870 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2008.11870 |
| publication_date | 2020-08-27 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2164547129, https://openalex.org/W2951839332, https://openalex.org/W2979777575, https://openalex.org/W317170363, https://openalex.org/W2527671145, https://openalex.org/W2739363250, https://openalex.org/W2979458288, https://openalex.org/W2979794459, https://openalex.org/W2086270884, https://openalex.org/W3029020430, https://openalex.org/W1871050032, https://openalex.org/W3015076091, https://openalex.org/W4288265053, https://openalex.org/W2464708700, https://openalex.org/W3106033385, https://openalex.org/W2994689640, https://openalex.org/W2085370032, https://openalex.org/W2008120479, https://openalex.org/W2922848531, https://openalex.org/W2134560790, https://openalex.org/W3208486703, https://openalex.org/W2970105478, https://openalex.org/W2883683269, https://openalex.org/W2979564444 |
| referenced_works_count | 24 |
| abstract_inverted_index.A | 129 |
| abstract_inverted_index.a | 14, 85 |
| abstract_inverted_index.3D | 10 |
| abstract_inverted_index.CT | 172 |
| abstract_inverted_index.In | 20, 62 |
| abstract_inverted_index.LN | 127 |
| abstract_inverted_index.an | 67, 160 |
| abstract_inverted_index.as | 26, 188, 225 |
| abstract_inverted_index.at | 201 |
| abstract_inverted_index.by | 81, 99, 110, 227 |
| abstract_inverted_index.in | 42, 84, 152 |
| abstract_inverted_index.is | 13, 40, 89, 108, 134, 157, 204 |
| abstract_inverted_index.of | 17, 38, 54, 59, 94, 101, 122, 163, 199 |
| abstract_inverted_index.on | 140, 159, 180 |
| abstract_inverted_index.or | 103 |
| abstract_inverted_index.to | 25, 72, 186, 190, 213 |
| abstract_inverted_index.we | 65 |
| abstract_inverted_index.Our | 175 |
| abstract_inverted_index.PET | 170 |
| abstract_inverted_index.The | 154, 194 |
| abstract_inverted_index.and | 2, 34, 47, 57, 74, 96, 125, 146, 171, 207 |
| abstract_inverted_index.are | 23, 150 |
| abstract_inverted_index.can | 116 |
| abstract_inverted_index.for | 50, 219 |
| abstract_inverted_index.low | 215 |
| abstract_inverted_index.one | 142 |
| abstract_inverted_index.the | 36, 44, 51, 76, 111, 181, 220 |
| abstract_inverted_index.two | 92 |
| abstract_inverted_index.Node | 28 |
| abstract_inverted_index.This | 107 |
| abstract_inverted_index.both | 169 |
| abstract_inverted_index.each | 114, 137 |
| abstract_inverted_index.from | 9, 148, 184 |
| abstract_inverted_index.have | 117, 214 |
| abstract_inverted_index.into | 91 |
| abstract_inverted_index.mean | 182 |
| abstract_inverted_index.most | 221 |
| abstract_inverted_index.size | 124 |
| abstract_inverted_index.soft | 104 |
| abstract_inverted_index.task | 16 |
| abstract_inverted_index.tend | 212 |
| abstract_inverted_index.that | 113 |
| abstract_inverted_index.they | 22 |
| abstract_inverted_index.this | 63 |
| abstract_inverted_index.with | 136, 168 |
| abstract_inverted_index.$141$ | 164 |
| abstract_inverted_index.GTVLN | 39, 88, 143, 197 |
| abstract_inverted_index.Gross | 29 |
| abstract_inverted_index.Lymph | 27 |
| abstract_inverted_index.Tumor | 30 |
| abstract_inverted_index.fused | 151 |
| abstract_inverted_index.human | 210 |
| abstract_inverted_index.lymph | 7 |
| abstract_inverted_index.means | 100 |
| abstract_inverted_index.nodes | 8 |
| abstract_inverted_index.novel | 130 |
| abstract_inverted_index.other | 126 |
| abstract_inverted_index.since | 209 |
| abstract_inverted_index.work, | 64 |
| abstract_inverted_index.work. | 193 |
| abstract_inverted_index.$20\%$ | 202 |
| abstract_inverted_index.$80\%$ | 218 |
| abstract_inverted_index.Volume | 31 |
| abstract_inverted_index.binary | 102 |
| abstract_inverted_index.branch | 138 |
| abstract_inverted_index.cancer | 5, 166 |
| abstract_inverted_index.gating | 70 |
| abstract_inverted_index.method | 156 |
| abstract_inverted_index.recall | 183, 198 |
| abstract_inverted_index.spread | 37 |
| abstract_inverted_index.though | 119 |
| abstract_inverted_index.(around | 217 |
| abstract_inverted_index.dataset | 162 |
| abstract_inverted_index.divided | 90 |
| abstract_inverted_index.gating. | 106 |
| abstract_inverted_index.highest | 195 |
| abstract_inverted_index.imaging | 12, 173 |
| abstract_inverted_index.manner. | 87 |
| abstract_inverted_index.network | 133 |
| abstract_inverted_index.outputs | 147 |
| abstract_inverted_index.propose | 66 |
| abstract_inverted_index.regions | 49 |
| abstract_inverted_index.results | 176 |
| abstract_inverted_index.trained | 135 |
| abstract_inverted_index.various | 60 |
| abstract_inverted_index.$72.5\%$ | 185 |
| abstract_inverted_index.$82.5\%$ | 200 |
| abstract_inverted_index.(GTVLN). | 32 |
| abstract_inverted_index.Finding, | 0 |
| abstract_inverted_index.achieved | 196 |
| abstract_inverted_index.approach | 71 |
| abstract_inverted_index.cancers. | 61 |
| abstract_inverted_index.category | 115, 144 |
| abstract_inverted_index.clinical | 15 |
| abstract_inverted_index.compared | 189 |
| abstract_inverted_index.defining | 43 |
| abstract_inverted_index.distance | 105 |
| abstract_inverted_index.distinct | 118 |
| abstract_inverted_index.in-house | 161 |
| abstract_inverted_index.learning | 141 |
| abstract_inverted_index.patients | 167 |
| abstract_inverted_index.previous | 191 |
| abstract_inverted_index.proposed | 155 |
| abstract_inverted_index.referred | 24 |
| abstract_inverted_index.relevant | 206 |
| abstract_inverted_index.reported | 226 |
| abstract_inverted_index.simplify | 75 |
| abstract_inverted_index.simulate | 73 |
| abstract_inverted_index.surgical | 55 |
| abstract_inverted_index.validate | 177 |
| abstract_inverted_index.valuable | 208 |
| abstract_inverted_index.$78.2\%$, | 187 |
| abstract_inverted_index.conducted | 80 |
| abstract_inverted_index.effective | 68 |
| abstract_inverted_index.essential | 41 |
| abstract_inverted_index.evaluated | 158 |
| abstract_inverted_index.features, | 145 |
| abstract_inverted_index.motivated | 109 |
| abstract_inverted_index.observers | 211 |
| abstract_inverted_index.paramount | 18 |
| abstract_inverted_index.precision | 203 |
| abstract_inverted_index.protocols | 79 |
| abstract_inverted_index.radiation | 82, 223 |
| abstract_inverted_index.reasoning | 78 |
| abstract_inverted_index.resection | 46, 56 |
| abstract_inverted_index.subgroups | 93 |
| abstract_inverted_index.workflows | 53 |
| abstract_inverted_index.clinically | 205 |
| abstract_inverted_index.downstream | 52 |
| abstract_inverted_index.esophageal | 165 |
| abstract_inverted_index.high-level | 77 |
| abstract_inverted_index.inference. | 153 |
| abstract_inverted_index.segmenting | 3 |
| abstract_inverted_index.suspicious | 4 |
| abstract_inverted_index.Determining | 33 |
| abstract_inverted_index.appearance, | 123 |
| abstract_inverted_index.delineating | 35 |
| abstract_inverted_index.experienced | 222 |
| abstract_inverted_index.identifying | 1 |
| abstract_inverted_index.importance. | 19 |
| abstract_inverted_index.irradiating | 48 |
| abstract_inverted_index.modalities. | 174 |
| abstract_inverted_index.observation | 112 |
| abstract_inverted_index.overlapping | 120 |
| abstract_inverted_index.sensitivity | 216 |
| abstract_inverted_index.significant | 178 |
| abstract_inverted_index.improvements | 179 |
| abstract_inverted_index.literature). | 228 |
| abstract_inverted_index.metastasized | 6 |
| abstract_inverted_index.multi-branch | 131, 149 |
| abstract_inverted_index.oncologists, | 83, 224 |
| abstract_inverted_index.radiotherapy | 58 |
| abstract_inverted_index.specializing | 139 |
| abstract_inverted_index.corresponding | 45 |
| abstract_inverted_index.distributions | 121 |
| abstract_inverted_index.radiotherapy, | 21 |
| abstract_inverted_index.respectively, | 98 |
| abstract_inverted_index.tumor-distal, | 97 |
| abstract_inverted_index.distance-based | 69 |
| abstract_inverted_index.multi-modality | 11 |
| abstract_inverted_index.tumor-proximal | 95 |
| abstract_inverted_index.characteristics. | 128 |
| abstract_inverted_index.state-of-the-art | 192 |
| abstract_inverted_index.divide-and-conquer | 86 |
| abstract_inverted_index.detection-by-segmentation | 132 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |