M-ar-K-PCA and M-ar-K-FastICA: Robust Feature Extraction for Classification of Non-Gaussian and Entropic Data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-1560908/v1
The kernel trick has enabled dimensionality reduction techniques to capture a higher extent of non-linearity in the data; however, reproducible, open-source kernels to aid with feature extraction are still limited and are not reliable when projecting features from non-Gaussian and entropic data for a robust classification of data. In fact, traditional kernels are either too simplistic (linear and identity) or have a limited range (sigmoid), thus being unable to handle and transform non-Gaussian and entropic input data adequately. To help in mitigating these challenges, this study presents the m-arcsinh Kernel (’m-ar-K’) Principal Component Analysis (’PCA’) and Fast Independent Component Analysis (’FastICA’) methods for feature extraction, i.e., the ’m-ar-K-PCA’ and ’m-ar-K-FastICA’ respectively. The m-ar-K function, freely available in Python and compatible with its open-source library ’scikit-learn’, is hereby coupled with PCA and FastICA and to achieve more reliable feature extraction in presence of a high extent of non-Gaussianity and randomness in the data, reducing the need for standardisation and pre-whitening respectively. Different classification tasks were considered, as related to five (N = 5) open access datasets of various degrees of non-normality and information entropy, available from scikit-learn and the University California Irvine (UCI) Machine Learning repository. Experimental results demonstrate improvements in the classification performance brought by the proposed feature extraction techniques. The novel m-ar-K-PCA and m-ar-K-FastICA dimensionality reduction approaches are compared to the ’PCA’ and ’FastICA’ gold standard methods respectively, supporting their overall higher reliability and computational efficiency, regardless of the underlying non-Gaussianity and uncertainty in the data. Thus, in particular, m-ar-K-PCA extends the use of PCA to pseudo-Gaussian distributions and m-ar-K-FastICA enables FastICA to withstand not only highly non-normal distributions, but also entropic data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-1560908/v1
- https://www.researchsquare.com/article/rs-1560908/latest.pdf
- OA Status
- green
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281788376
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281788376Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-1560908/v1Digital Object Identifier
- Title
-
M-ar-K-PCA and M-ar-K-FastICA: Robust Feature Extraction for Classification of Non-Gaussian and Entropic DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-06Full publication date if available
- Authors
-
Marianne Lyne Manaog, Luca ParisiList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-1560908/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-1560908/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-1560908/latest.pdfDirect OA link when available
- Concepts
-
FastICA, Pattern recognition (psychology), Gaussian, Artificial intelligence, Feature extraction, Mathematics, Computer science, Chemistry, Blind signal separation, Computational chemistry, Computer network, Channel (broadcasting)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281788376 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-1560908/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-1560908/v1 |
| ids.openalex | https://openalex.org/W4281788376 |
| fwci | 0.0 |
| type | preprint |
| title | M-ar-K-PCA and M-ar-K-FastICA: Robust Feature Extraction for Classification of Non-Gaussian and Entropic Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11447 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Blind Source Separation Techniques |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C157709420 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8100719451904297 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3739974 |
| concepts[0].display_name | FastICA |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7051257491111755 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C163716315 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5014362335205078 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[2].display_name | Gaussian |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4939485192298889 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C52622490 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46083930134773254 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[4].display_name | Feature extraction |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.42984792590141296 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4007839560508728 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C185592680 |
| concepts[7].level | 0 |
| concepts[7].score | 0.25203603506088257 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[7].display_name | Chemistry |
| concepts[8].id | https://openalex.org/C120317606 |
| concepts[8].level | 3 |
| concepts[8].score | 0.08241793513298035 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17105967 |
| concepts[8].display_name | Blind signal separation |
| concepts[9].id | https://openalex.org/C147597530 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[9].display_name | Computational chemistry |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| concepts[11].id | https://openalex.org/C127162648 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[11].display_name | Channel (broadcasting) |
| keywords[0].id | https://openalex.org/keywords/fastica |
| keywords[0].score | 0.8100719451904297 |
| keywords[0].display_name | FastICA |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.7051257491111755 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/gaussian |
| keywords[2].score | 0.5014362335205078 |
| keywords[2].display_name | Gaussian |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4939485192298889 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/feature-extraction |
| keywords[4].score | 0.46083930134773254 |
| keywords[4].display_name | Feature extraction |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.42984792590141296 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4007839560508728 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/chemistry |
| keywords[7].score | 0.25203603506088257 |
| keywords[7].display_name | Chemistry |
| keywords[8].id | https://openalex.org/keywords/blind-signal-separation |
| keywords[8].score | 0.08241793513298035 |
| keywords[8].display_name | Blind signal separation |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-1560908/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-1560908/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-1560908/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5016989796 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2433-3614 |
| authorships[0].author.display_name | Marianne Lyne Manaog |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I73417466 |
| authorships[0].affiliations[0].raw_affiliation_string | Coventry University |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I110002522 |
| authorships[0].affiliations[1].raw_affiliation_string | University of Essex |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I110002522 |
| authorships[0].affiliations[2].raw_affiliation_string | University of Essex School of Computer Science and Electronic Engineering Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom |
| authorships[0].affiliations[3].institution_ids | https://openalex.org/I73417466 |
| authorships[0].affiliations[3].raw_affiliation_string | Coventry University Faculty of Business and Law (Artificial Intelligence Specialism) Priory Street, Coventry, CV1 5FB, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I73417466 |
| authorships[0].institutions[0].ror | https://ror.org/01tgmhj36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I73417466 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Coventry University |
| authorships[0].institutions[1].id | https://openalex.org/I110002522 |
| authorships[0].institutions[1].ror | https://ror.org/02nkf1q06 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I110002522 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | University of Essex |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marianne Lyne Manaog |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Coventry University, Coventry University Faculty of Business and Law (Artificial Intelligence Specialism) Priory Street, Coventry, CV1 5FB, United Kingdom, University of Essex, University of Essex School of Computer Science and Electronic Engineering Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5084101050 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5865-8708 |
| authorships[1].author.display_name | Luca Parisi |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I73417466 |
| authorships[1].affiliations[0].raw_affiliation_string | Coventry University |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I73417466 |
| authorships[1].affiliations[1].raw_affiliation_string | Coventry University Faculty of Business and Law (Artificial Intelligence Specialism) Priory Street, Coventry, CV1 5FB, United Kingdom |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I110002522 |
| authorships[1].affiliations[2].raw_affiliation_string | University of Essex School of Computer Science and Electronic Engineering Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom |
| authorships[1].affiliations[3].institution_ids | https://openalex.org/I110002522 |
| authorships[1].affiliations[3].raw_affiliation_string | University of Essex |
| authorships[1].institutions[0].id | https://openalex.org/I73417466 |
| authorships[1].institutions[0].ror | https://ror.org/01tgmhj36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I73417466 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Coventry University |
| authorships[1].institutions[1].id | https://openalex.org/I110002522 |
| authorships[1].institutions[1].ror | https://ror.org/02nkf1q06 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I110002522 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | University of Essex |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Luca Parisi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Coventry University, Coventry University Faculty of Business and Law (Artificial Intelligence Specialism) Priory Street, Coventry, CV1 5FB, United Kingdom, University of Essex, University of Essex School of Computer Science and Electronic Engineering Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-1560908/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | M-ar-K-PCA and M-ar-K-FastICA: Robust Feature Extraction for Classification of Non-Gaussian and Entropic Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11447 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Blind Source Separation Techniques |
| related_works | https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W2601157893, https://openalex.org/W2373006798, https://openalex.org/W2131735617, https://openalex.org/W2056912418, https://openalex.org/W2033213769, https://openalex.org/W4312376745, https://openalex.org/W2347848979, https://openalex.org/W2136016640 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-1560908/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-1560908/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1560908/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-1560908/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-1560908/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1560908/v1 |
| publication_date | 2022-06-06 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1571599052, https://openalex.org/W3012665221, https://openalex.org/W2805249667, https://openalex.org/W6687483927, https://openalex.org/W2294321532, https://openalex.org/W2886908257, https://openalex.org/W2123649031, https://openalex.org/W2809090039, https://openalex.org/W1556122023, https://openalex.org/W1965914766, https://openalex.org/W7075721076, https://openalex.org/W4210985457, https://openalex.org/W2163605009, https://openalex.org/W1538131130, https://openalex.org/W2115074110, https://openalex.org/W1498180239, https://openalex.org/W2914295770, https://openalex.org/W2893360048, https://openalex.org/W1875217535, https://openalex.org/W1498436455, https://openalex.org/W2972441196, https://openalex.org/W1587559447, https://openalex.org/W56793145, https://openalex.org/W2168745915, https://openalex.org/W6679345976, https://openalex.org/W2119388857, https://openalex.org/W2137233422, https://openalex.org/W3011387335, https://openalex.org/W2567092460, https://openalex.org/W2169945149, https://openalex.org/W4229977739, https://openalex.org/W1686810756, https://openalex.org/W3038428716, https://openalex.org/W2993383518, https://openalex.org/W2027461913, https://openalex.org/W3016401366, https://openalex.org/W2116799974, https://openalex.org/W2128448396, https://openalex.org/W2131617561, https://openalex.org/W2921118685, https://openalex.org/W2160704933, https://openalex.org/W2194775991, https://openalex.org/W2905641156, https://openalex.org/W4313169793, https://openalex.org/W3130784583, https://openalex.org/W4385245566, https://openalex.org/W3095809712 |
| referenced_works_count | 47 |
| abstract_inverted_index.= | 171 |
| abstract_inverted_index.a | 11, 44, 62, 143 |
| abstract_inverted_index.(N | 170 |
| abstract_inverted_index.5) | 172 |
| abstract_inverted_index.In | 49 |
| abstract_inverted_index.To | 79 |
| abstract_inverted_index.as | 166 |
| abstract_inverted_index.by | 205 |
| abstract_inverted_index.in | 16, 81, 117, 140, 150, 200, 245, 249 |
| abstract_inverted_index.is | 126 |
| abstract_inverted_index.of | 14, 47, 142, 146, 176, 179, 239, 255 |
| abstract_inverted_index.or | 60 |
| abstract_inverted_index.to | 9, 23, 69, 134, 168, 221, 257, 264 |
| abstract_inverted_index.PCA | 130, 256 |
| abstract_inverted_index.The | 1, 112, 211 |
| abstract_inverted_index.aid | 24 |
| abstract_inverted_index.and | 31, 40, 58, 71, 74, 96, 109, 119, 131, 133, 148, 158, 181, 187, 214, 224, 235, 243, 260 |
| abstract_inverted_index.are | 28, 32, 53, 219 |
| abstract_inverted_index.but | 271 |
| abstract_inverted_index.for | 43, 103, 156 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.its | 122 |
| abstract_inverted_index.not | 33, 266 |
| abstract_inverted_index.the | 17, 88, 107, 151, 154, 188, 201, 206, 222, 240, 246, 253 |
| abstract_inverted_index.too | 55 |
| abstract_inverted_index.use | 254 |
| abstract_inverted_index.Fast | 97 |
| abstract_inverted_index.also | 272 |
| abstract_inverted_index.data | 42, 77 |
| abstract_inverted_index.five | 169 |
| abstract_inverted_index.from | 38, 185 |
| abstract_inverted_index.gold | 226 |
| abstract_inverted_index.have | 61 |
| abstract_inverted_index.help | 80 |
| abstract_inverted_index.high | 144 |
| abstract_inverted_index.more | 136 |
| abstract_inverted_index.need | 155 |
| abstract_inverted_index.only | 267 |
| abstract_inverted_index.open | 173 |
| abstract_inverted_index.this | 85 |
| abstract_inverted_index.thus | 66 |
| abstract_inverted_index.were | 164 |
| abstract_inverted_index.when | 35 |
| abstract_inverted_index.with | 25, 121, 129 |
| abstract_inverted_index.(UCI) | 192 |
| abstract_inverted_index.Thus, | 248 |
| abstract_inverted_index.being | 67 |
| abstract_inverted_index.data, | 152 |
| abstract_inverted_index.data. | 48, 247, 274 |
| abstract_inverted_index.data; | 18 |
| abstract_inverted_index.fact, | 50 |
| abstract_inverted_index.i.e., | 106 |
| abstract_inverted_index.input | 76 |
| abstract_inverted_index.novel | 212 |
| abstract_inverted_index.range | 64 |
| abstract_inverted_index.still | 29 |
| abstract_inverted_index.study | 86 |
| abstract_inverted_index.tasks | 163 |
| abstract_inverted_index.their | 231 |
| abstract_inverted_index.these | 83 |
| abstract_inverted_index.trick | 3 |
| abstract_inverted_index.Irvine | 191 |
| abstract_inverted_index.Kernel | 90 |
| abstract_inverted_index.Python | 118 |
| abstract_inverted_index.access | 174 |
| abstract_inverted_index.either | 54 |
| abstract_inverted_index.extent | 13, 145 |
| abstract_inverted_index.freely | 115 |
| abstract_inverted_index.handle | 70 |
| abstract_inverted_index.hereby | 127 |
| abstract_inverted_index.higher | 12, 233 |
| abstract_inverted_index.highly | 268 |
| abstract_inverted_index.kernel | 2 |
| abstract_inverted_index.m-ar-K | 113 |
| abstract_inverted_index.robust | 45 |
| abstract_inverted_index.unable | 68 |
| abstract_inverted_index.(linear | 57 |
| abstract_inverted_index.FastICA | 132, 263 |
| abstract_inverted_index.Machine | 193 |
| abstract_inverted_index.achieve | 135 |
| abstract_inverted_index.brought | 204 |
| abstract_inverted_index.capture | 10 |
| abstract_inverted_index.coupled | 128 |
| abstract_inverted_index.degrees | 178 |
| abstract_inverted_index.enabled | 5 |
| abstract_inverted_index.enables | 262 |
| abstract_inverted_index.extends | 252 |
| abstract_inverted_index.feature | 26, 104, 138, 208 |
| abstract_inverted_index.kernels | 22, 52 |
| abstract_inverted_index.library | 124 |
| abstract_inverted_index.limited | 30, 63 |
| abstract_inverted_index.methods | 102, 228 |
| abstract_inverted_index.overall | 232 |
| abstract_inverted_index.related | 167 |
| abstract_inverted_index.results | 197 |
| abstract_inverted_index.various | 177 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Analysis | 94, 100 |
| abstract_inverted_index.Learning | 194 |
| abstract_inverted_index.compared | 220 |
| abstract_inverted_index.datasets | 175 |
| abstract_inverted_index.entropic | 41, 75, 273 |
| abstract_inverted_index.entropy, | 183 |
| abstract_inverted_index.features | 37 |
| abstract_inverted_index.however, | 19 |
| abstract_inverted_index.presence | 141 |
| abstract_inverted_index.presents | 87 |
| abstract_inverted_index.proposed | 207 |
| abstract_inverted_index.reducing | 153 |
| abstract_inverted_index.reliable | 34, 137 |
| abstract_inverted_index.standard | 227 |
| abstract_inverted_index.Component | 93, 99 |
| abstract_inverted_index.Different | 161 |
| abstract_inverted_index.Principal | 92 |
| abstract_inverted_index.available | 116, 184 |
| abstract_inverted_index.function, | 114 |
| abstract_inverted_index.identity) | 59 |
| abstract_inverted_index.m-arcsinh | 89 |
| abstract_inverted_index.reduction | 7, 217 |
| abstract_inverted_index.transform | 72 |
| abstract_inverted_index.withstand | 265 |
| abstract_inverted_index.’PCA’ | 223 |
| abstract_inverted_index.(sigmoid), | 65 |
| abstract_inverted_index.California | 190 |
| abstract_inverted_index.University | 189 |
| abstract_inverted_index.approaches | 218 |
| abstract_inverted_index.compatible | 120 |
| abstract_inverted_index.extraction | 27, 139, 209 |
| abstract_inverted_index.m-ar-K-PCA | 213, 251 |
| abstract_inverted_index.mitigating | 82 |
| abstract_inverted_index.non-normal | 269 |
| abstract_inverted_index.projecting | 36 |
| abstract_inverted_index.randomness | 149 |
| abstract_inverted_index.regardless | 238 |
| abstract_inverted_index.simplistic | 56 |
| abstract_inverted_index.supporting | 230 |
| abstract_inverted_index.techniques | 8 |
| abstract_inverted_index.underlying | 241 |
| abstract_inverted_index.(’PCA’) | 95 |
| abstract_inverted_index.Independent | 98 |
| abstract_inverted_index.adequately. | 78 |
| abstract_inverted_index.challenges, | 84 |
| abstract_inverted_index.considered, | 165 |
| abstract_inverted_index.demonstrate | 198 |
| abstract_inverted_index.efficiency, | 237 |
| abstract_inverted_index.extraction, | 105 |
| abstract_inverted_index.information | 182 |
| abstract_inverted_index.open-source | 21, 123 |
| abstract_inverted_index.particular, | 250 |
| abstract_inverted_index.performance | 203 |
| abstract_inverted_index.reliability | 234 |
| abstract_inverted_index.repository. | 195 |
| abstract_inverted_index.techniques. | 210 |
| abstract_inverted_index.traditional | 51 |
| abstract_inverted_index.uncertainty | 244 |
| abstract_inverted_index.Experimental | 196 |
| abstract_inverted_index.improvements | 199 |
| abstract_inverted_index.non-Gaussian | 39, 73 |
| abstract_inverted_index.scikit-learn | 186 |
| abstract_inverted_index.computational | 236 |
| abstract_inverted_index.distributions | 259 |
| abstract_inverted_index.non-linearity | 15 |
| abstract_inverted_index.non-normality | 180 |
| abstract_inverted_index.pre-whitening | 159 |
| abstract_inverted_index.reproducible, | 20 |
| abstract_inverted_index.respectively, | 229 |
| abstract_inverted_index.respectively. | 111, 160 |
| abstract_inverted_index.’FastICA’ | 225 |
| abstract_inverted_index.(’m-ar-K’) | 91 |
| abstract_inverted_index.classification | 46, 162, 202 |
| abstract_inverted_index.dimensionality | 6, 216 |
| abstract_inverted_index.distributions, | 270 |
| abstract_inverted_index.m-ar-K-FastICA | 215, 261 |
| abstract_inverted_index.(’FastICA’) | 101 |
| abstract_inverted_index.non-Gaussianity | 147, 242 |
| abstract_inverted_index.pseudo-Gaussian | 258 |
| abstract_inverted_index.standardisation | 157 |
| abstract_inverted_index.’m-ar-K-PCA’ | 108 |
| abstract_inverted_index.’scikit-learn’, | 125 |
| abstract_inverted_index.’m-ar-K-FastICA’ | 110 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.05875935 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |