M2R2: Mixture of Multi-Rate Residuals for Efficient Transformer Inference Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.02040
Residual transformations enhance the representational depth and expressive power of large language models (LLMs). However, applying static residual transformations across all tokens in auto-regressive generation leads to a suboptimal trade-off between inference efficiency and generation fidelity. Existing methods, including Early Exiting, Skip Decoding, and Mixture-of-Depth address this by modulating the residual transformation based on token-level complexity. Nevertheless, these approaches predominantly consider the distance traversed by tokens through the model layers, neglecting the underlying velocity of residual evolution. We introduce Mixture of Multi-rate Residuals (M2R2), a framework that dynamically modulates residual velocity to improve early alignment, enhancing inference efficiency. Evaluations on reasoning oriented tasks such as Koala, Self-Instruct, WizardLM, and MT-Bench show M2R2 surpasses state-of-the-art distance-based strategies, balancing generation quality and speedup. In self-speculative decoding setup, M2R2 achieves up to 2.8x speedups on MT-Bench, outperforming methods like 2-model speculative decoding, Medusa, LookAhead Decoding, and DEED. In Mixture-of-Experts (MoE) architectures, integrating early residual alignment with ahead-of-time expert loading into high-bandwidth memory (HBM) accelerates decoding, reduces expert-switching bottlenecks, and achieves a 2.9x speedup, making it highly effective in resource-constrained environments.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.02040
- https://arxiv.org/pdf/2502.02040
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407185598
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407185598Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.02040Digital Object Identifier
- Title
-
M2R2: Mixture of Multi-Rate Residuals for Efficient Transformer InferenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-04Full publication date if available
- Authors
-
Nikhil Bhendawade, Mahyar Najibi, Devang Naik, I. I. BelousovaList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.02040Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.02040Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.02040Direct OA link when available
- Concepts
-
Inference, Transformer, Econometrics, Computer science, Mathematics, Artificial intelligence, Engineering, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407185598 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.02040 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.02040 |
| ids.openalex | https://openalex.org/W4407185598 |
| fwci | |
| type | preprint |
| title | M2R2: Mixture of Multi-Rate Residuals for Efficient Transformer Inference |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12169 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.991100013256073 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Non-Destructive Testing Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9853000044822693 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T10876 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9776999950408936 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Fault Detection and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6235190629959106 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5980299711227417 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C149782125 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3744037449359894 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[2].display_name | Econometrics |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.338795006275177 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.30572646856307983 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.17256230115890503 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1396259367465973 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C119599485 |
| concepts[7].level | 1 |
| concepts[7].score | 0.13937097787857056 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[7].display_name | Electrical engineering |
| concepts[8].id | https://openalex.org/C165801399 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0880407989025116 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[8].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.6235190629959106 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.5980299711227417 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/econometrics |
| keywords[2].score | 0.3744037449359894 |
| keywords[2].display_name | Econometrics |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.338795006275177 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.30572646856307983 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.17256230115890503 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.1396259367465973 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/electrical-engineering |
| keywords[7].score | 0.13937097787857056 |
| keywords[7].display_name | Electrical engineering |
| keywords[8].id | https://openalex.org/keywords/voltage |
| keywords[8].score | 0.0880407989025116 |
| keywords[8].display_name | Voltage |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.02040 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.02040 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.02040 |
| locations[1].id | doi:10.48550/arxiv.2502.02040 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.02040 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5091069478 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4574-3102 |
| authorships[0].author.display_name | Nikhil Bhendawade |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bhendawade, Nikhil |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021900923 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mahyar Najibi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Najibi, Mahyar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5113880378 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-7838-1623 |
| authorships[2].author.display_name | Devang Naik |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Naik, Devang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101232644 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | I. I. Belousova |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Belousova, Irina |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.02040 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | M2R2: Mixture of Multi-Rate Residuals for Efficient Transformer Inference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12169 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.991100013256073 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Non-Destructive Testing Techniques |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W4206178588, https://openalex.org/W3094491777, https://openalex.org/W3214715529, https://openalex.org/W4287635093 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.02040 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.02040 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.02040 |
| primary_location.id | pmh:oai:arXiv.org:2502.02040 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.02040 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.02040 |
| publication_date | 2025-02-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27, 84, 167 |
| abstract_inverted_index.In | 121, 144 |
| abstract_inverted_index.We | 77 |
| abstract_inverted_index.as | 104 |
| abstract_inverted_index.by | 47, 64 |
| abstract_inverted_index.in | 22, 174 |
| abstract_inverted_index.it | 171 |
| abstract_inverted_index.of | 9, 74, 80 |
| abstract_inverted_index.on | 53, 99, 131 |
| abstract_inverted_index.to | 26, 91, 128 |
| abstract_inverted_index.up | 127 |
| abstract_inverted_index.all | 20 |
| abstract_inverted_index.and | 6, 33, 43, 108, 119, 142, 165 |
| abstract_inverted_index.the | 3, 49, 61, 67, 71 |
| abstract_inverted_index.2.8x | 129 |
| abstract_inverted_index.2.9x | 168 |
| abstract_inverted_index.M2R2 | 111, 125 |
| abstract_inverted_index.Skip | 41 |
| abstract_inverted_index.into | 156 |
| abstract_inverted_index.like | 135 |
| abstract_inverted_index.show | 110 |
| abstract_inverted_index.such | 103 |
| abstract_inverted_index.that | 86 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.with | 152 |
| abstract_inverted_index.(HBM) | 159 |
| abstract_inverted_index.(MoE) | 146 |
| abstract_inverted_index.DEED. | 143 |
| abstract_inverted_index.Early | 39 |
| abstract_inverted_index.based | 52 |
| abstract_inverted_index.depth | 5 |
| abstract_inverted_index.early | 93, 149 |
| abstract_inverted_index.large | 10 |
| abstract_inverted_index.leads | 25 |
| abstract_inverted_index.model | 68 |
| abstract_inverted_index.power | 8 |
| abstract_inverted_index.tasks | 102 |
| abstract_inverted_index.these | 57 |
| abstract_inverted_index.Koala, | 105 |
| abstract_inverted_index.across | 19 |
| abstract_inverted_index.expert | 154 |
| abstract_inverted_index.highly | 172 |
| abstract_inverted_index.making | 170 |
| abstract_inverted_index.memory | 158 |
| abstract_inverted_index.models | 12 |
| abstract_inverted_index.setup, | 124 |
| abstract_inverted_index.static | 16 |
| abstract_inverted_index.tokens | 21, 65 |
| abstract_inverted_index.(LLMs). | 13 |
| abstract_inverted_index.(M2R2), | 83 |
| abstract_inverted_index.2-model | 136 |
| abstract_inverted_index.Medusa, | 139 |
| abstract_inverted_index.Mixture | 79 |
| abstract_inverted_index.address | 45 |
| abstract_inverted_index.between | 30 |
| abstract_inverted_index.enhance | 2 |
| abstract_inverted_index.improve | 92 |
| abstract_inverted_index.layers, | 69 |
| abstract_inverted_index.loading | 155 |
| abstract_inverted_index.methods | 134 |
| abstract_inverted_index.quality | 118 |
| abstract_inverted_index.reduces | 162 |
| abstract_inverted_index.through | 66 |
| abstract_inverted_index.Existing | 36 |
| abstract_inverted_index.Exiting, | 40 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.MT-Bench | 109 |
| abstract_inverted_index.Residual | 0 |
| abstract_inverted_index.achieves | 126, 166 |
| abstract_inverted_index.applying | 15 |
| abstract_inverted_index.consider | 60 |
| abstract_inverted_index.decoding | 123 |
| abstract_inverted_index.distance | 62 |
| abstract_inverted_index.language | 11 |
| abstract_inverted_index.methods, | 37 |
| abstract_inverted_index.oriented | 101 |
| abstract_inverted_index.residual | 17, 50, 75, 89, 150 |
| abstract_inverted_index.speedup, | 169 |
| abstract_inverted_index.speedup. | 120 |
| abstract_inverted_index.speedups | 130 |
| abstract_inverted_index.velocity | 73, 90 |
| abstract_inverted_index.Decoding, | 42, 141 |
| abstract_inverted_index.LookAhead | 140 |
| abstract_inverted_index.MT-Bench, | 132 |
| abstract_inverted_index.Residuals | 82 |
| abstract_inverted_index.WizardLM, | 107 |
| abstract_inverted_index.alignment | 151 |
| abstract_inverted_index.balancing | 116 |
| abstract_inverted_index.decoding, | 138, 161 |
| abstract_inverted_index.effective | 173 |
| abstract_inverted_index.enhancing | 95 |
| abstract_inverted_index.fidelity. | 35 |
| abstract_inverted_index.framework | 85 |
| abstract_inverted_index.including | 38 |
| abstract_inverted_index.inference | 31, 96 |
| abstract_inverted_index.introduce | 78 |
| abstract_inverted_index.modulates | 88 |
| abstract_inverted_index.reasoning | 100 |
| abstract_inverted_index.surpasses | 112 |
| abstract_inverted_index.trade-off | 29 |
| abstract_inverted_index.traversed | 63 |
| abstract_inverted_index.Multi-rate | 81 |
| abstract_inverted_index.alignment, | 94 |
| abstract_inverted_index.approaches | 58 |
| abstract_inverted_index.efficiency | 32 |
| abstract_inverted_index.evolution. | 76 |
| abstract_inverted_index.expressive | 7 |
| abstract_inverted_index.generation | 24, 34, 117 |
| abstract_inverted_index.modulating | 48 |
| abstract_inverted_index.neglecting | 70 |
| abstract_inverted_index.suboptimal | 28 |
| abstract_inverted_index.underlying | 72 |
| abstract_inverted_index.Evaluations | 98 |
| abstract_inverted_index.accelerates | 160 |
| abstract_inverted_index.complexity. | 55 |
| abstract_inverted_index.dynamically | 87 |
| abstract_inverted_index.efficiency. | 97 |
| abstract_inverted_index.integrating | 148 |
| abstract_inverted_index.speculative | 137 |
| abstract_inverted_index.strategies, | 115 |
| abstract_inverted_index.token-level | 54 |
| abstract_inverted_index.bottlenecks, | 164 |
| abstract_inverted_index.Nevertheless, | 56 |
| abstract_inverted_index.ahead-of-time | 153 |
| abstract_inverted_index.environments. | 176 |
| abstract_inverted_index.outperforming | 133 |
| abstract_inverted_index.predominantly | 59 |
| abstract_inverted_index.Self-Instruct, | 106 |
| abstract_inverted_index.architectures, | 147 |
| abstract_inverted_index.distance-based | 114 |
| abstract_inverted_index.high-bandwidth | 157 |
| abstract_inverted_index.transformation | 51 |
| abstract_inverted_index.auto-regressive | 23 |
| abstract_inverted_index.transformations | 1, 18 |
| abstract_inverted_index.Mixture-of-Depth | 44 |
| abstract_inverted_index.expert-switching | 163 |
| abstract_inverted_index.representational | 4 |
| abstract_inverted_index.self-speculative | 122 |
| abstract_inverted_index.state-of-the-art | 113 |
| abstract_inverted_index.Mixture-of-Experts | 145 |
| abstract_inverted_index.resource-constrained | 175 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |