Machine and deep learning classifiers for binary and multi-class network intrusion detection systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.11591/ijai.v14.i6.pp4814-4827
The rapid proliferation of the internet and advancements in communication technologies have significantly improved networking and increased data vol ume. This phenomenon has subsequently caused a multitude of novel attacks, thereby presenting significant challenges for network security in the intrusion detection system (IDS). Moreover, the ongoing threat from authorized entities who try to carry out various types of attacks on the network is a concern that must be handled seriously. IDS are used to provide network availability, confidentiality, and integrity by employing machine learning (ML) and deep learning (DL) algorithms. This research aimed to study the impacts of the binary and multi-attack instances label by establishing IDS that leverages hybrid algorithms, including artificial neural networks (ANN), random forest (RF), and logistic model trees (LMTs). The paper addresses challenges such as data pre processing, feature selection, and managing imbalanced datasets by applying synthetic minority oversampling technique (SMOTE) and Pearson’s correlation methodologies. The IDS was tested using network security laboratory knowledge discovery datasets (NSL-KDD) and catalonia independence corpus intrusion detection system (CIC-IDS-2017) datasets, achieving an average F1-score of 96% for binary classification on NSL-KDD and 85% for binary classification on CIC-IDS-2017, while for multi-classification, the proposed model achieved an average F1-score of 82% and 96% for NSL-KDD and CIC-IDS-2017 successively.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.11591/ijai.v14.i6.pp4814-4827
- https://ijai.iaescore.com/index.php/IJAI/article/download/27017/14858
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W7108691727
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7108691727Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijai.v14.i6.pp4814-4827Digital Object Identifier
- Title
-
Machine and deep learning classifiers for binary and multi-class network intrusion detection systemsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-01Full publication date if available
- Authors
-
Ahmad ALoqaily, Emad Eddien Abdallah, Esraa Abu Elsoud, Yazan Hamdan, Khaled Jallad, Ahmad ALoqaily, Emad Eddien Abdallah, Esraa Abu Elsoud, Yazan Hamdan, Khaled JalladList of authors in order
- Landing page
-
https://doi.org/10.11591/ijai.v14.i6.pp4814-4827Publisher landing page
- PDF URL
-
https://ijai.iaescore.com/index.php/IJAI/article/download/27017/14858Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijai.iaescore.com/index.php/IJAI/article/download/27017/14858Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Intrusion detection system, Deep learning, Machine learning, Random forest, Artificial neural network, Feature (linguistics), Binary classification, Data mining, Network security, Binary number, Oversampling, The Internet, Deep belief network, Binary data, Information security, Big data, Feature extraction, Supervised learning, Binary Independence Model, Deep neural networksTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7108691727 |
|---|---|
| doi | https://doi.org/10.11591/ijai.v14.i6.pp4814-4827 |
| ids.doi | https://doi.org/10.11591/ijai.v14.i6.pp4814-4827 |
| ids.openalex | https://openalex.org/W7108691727 |
| fwci | 0.0 |
| type | article |
| title | Machine and deep learning classifiers for binary and multi-class network intrusion detection systems |
| biblio.issue | 6 |
| biblio.volume | 14 |
| biblio.last_page | 4814 |
| biblio.first_page | 4814 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8930116891860962 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T13324 |
| topics[1].field.id | https://openalex.org/fields/35 |
| topics[1].field.display_name | Dentistry |
| topics[1].score | 0.010639854706823826 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3506 |
| topics[1].subfield.display_name | Periodontics |
| topics[1].display_name | Scientific and Engineering Research Topics |
| topics[2].id | https://openalex.org/T13038 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.006989116780459881 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Internet of Things and AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8561291694641113 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.693436324596405 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C35525427 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6574752926826477 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[2].display_name | Intrusion detection system |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6113706231117249 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6001311540603638 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C169258074 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5364682078361511 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[5].display_name | Random forest |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5259406566619873 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47791606187820435 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C66905080 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4741230309009552 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17005494 |
| concepts[8].display_name | Binary classification |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4603855609893799 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C182590292 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4541947841644287 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q989632 |
| concepts[10].display_name | Network security |
| concepts[11].id | https://openalex.org/C48372109 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43938690423965454 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[11].display_name | Binary number |
| concepts[12].id | https://openalex.org/C197323446 |
| concepts[12].level | 3 |
| concepts[12].score | 0.43008673191070557 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q331222 |
| concepts[12].display_name | Oversampling |
| concepts[13].id | https://openalex.org/C110875604 |
| concepts[13].level | 2 |
| concepts[13].score | 0.35215330123901367 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[13].display_name | The Internet |
| concepts[14].id | https://openalex.org/C97385483 |
| concepts[14].level | 3 |
| concepts[14].score | 0.295706182718277 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q16954980 |
| concepts[14].display_name | Deep belief network |
| concepts[15].id | https://openalex.org/C2779190172 |
| concepts[15].level | 3 |
| concepts[15].score | 0.2944043278694153 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4913888 |
| concepts[15].display_name | Binary data |
| concepts[16].id | https://openalex.org/C527648132 |
| concepts[16].level | 2 |
| concepts[16].score | 0.2937765121459961 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q189900 |
| concepts[16].display_name | Information security |
| concepts[17].id | https://openalex.org/C75684735 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2905794680118561 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[17].display_name | Big data |
| concepts[18].id | https://openalex.org/C52622490 |
| concepts[18].level | 2 |
| concepts[18].score | 0.27609962224960327 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[18].display_name | Feature extraction |
| concepts[19].id | https://openalex.org/C136389625 |
| concepts[19].level | 3 |
| concepts[19].score | 0.26659008860588074 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[19].display_name | Supervised learning |
| concepts[20].id | https://openalex.org/C37061001 |
| concepts[20].level | 3 |
| concepts[20].score | 0.2642975449562073 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q3531721 |
| concepts[20].display_name | Binary Independence Model |
| concepts[21].id | https://openalex.org/C2984842247 |
| concepts[21].level | 3 |
| concepts[21].score | 0.25639808177948 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[21].display_name | Deep neural networks |
| keywords[0].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[0].score | 0.6574752926826477 |
| keywords[0].display_name | Intrusion detection system |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.6113706231117249 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/random-forest |
| keywords[2].score | 0.5364682078361511 |
| keywords[2].display_name | Random forest |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5259406566619873 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.47791606187820435 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/binary-classification |
| keywords[5].score | 0.4741230309009552 |
| keywords[5].display_name | Binary classification |
| keywords[6].id | https://openalex.org/keywords/network-security |
| keywords[6].score | 0.4541947841644287 |
| keywords[6].display_name | Network security |
| keywords[7].id | https://openalex.org/keywords/binary-number |
| keywords[7].score | 0.43938690423965454 |
| keywords[7].display_name | Binary number |
| language | |
| locations[0].id | doi:10.11591/ijai.v14.i6.pp4814-4827 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764408626 |
| locations[0].source.issn | 2089-4872, 2252-8938 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2089-4872 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IAES International Journal of Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/27017/14858 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijai.v14.i6.pp4814-4827 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A4202183190 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7942-9018 |
| authorships[0].author.display_name | Ahmad ALoqaily |
| authorships[0].countries | JO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157392197 |
| authorships[0].affiliations[0].raw_affiliation_string | The Hashemite University |
| authorships[0].institutions[0].id | https://openalex.org/I157392197 |
| authorships[0].institutions[0].ror | https://ror.org/04a1r5z94 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157392197 |
| authorships[0].institutions[0].country_code | JO |
| authorships[0].institutions[0].display_name | Hashemite University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahmad Aloqaily |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | The Hashemite University |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Emad Eddien Abdallah |
| authorships[1].countries | JO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157392197 |
| authorships[1].affiliations[0].raw_affiliation_string | The Hashemite University |
| authorships[1].institutions[0].id | https://openalex.org/I157392197 |
| authorships[1].institutions[0].ror | https://ror.org/04a1r5z94 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I157392197 |
| authorships[1].institutions[0].country_code | JO |
| authorships[1].institutions[0].display_name | Hashemite University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Emad Eddien Abdallah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The Hashemite University |
| authorships[2].author.id | https://openalex.org/A4280801067 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-0796-8522 |
| authorships[2].author.display_name | Esraa Abu Elsoud |
| authorships[2].countries | JO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I153687341 |
| authorships[2].affiliations[0].raw_affiliation_string | Zarqa University |
| authorships[2].institutions[0].id | https://openalex.org/I153687341 |
| authorships[2].institutions[0].ror | https://ror.org/01wf1es90 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I153687341 |
| authorships[2].institutions[0].country_code | JO |
| authorships[2].institutions[0].display_name | Zarqa University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Esraa Abu Elsoud |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Zarqa University |
| authorships[3].author.id | https://openalex.org/A2956045618 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yazan Hamdan |
| authorships[3].countries | JO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157392197 |
| authorships[3].affiliations[0].raw_affiliation_string | The Hashemite University |
| authorships[3].institutions[0].id | https://openalex.org/I157392197 |
| authorships[3].institutions[0].ror | https://ror.org/04a1r5z94 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157392197 |
| authorships[3].institutions[0].country_code | JO |
| authorships[3].institutions[0].display_name | Hashemite University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yazan Hamdan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The Hashemite University |
| authorships[4].author.id | https://openalex.org/A3198479633 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Khaled Jallad |
| authorships[4].countries | JO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I157392197 |
| authorships[4].affiliations[0].raw_affiliation_string | The Hashemite University |
| authorships[4].institutions[0].id | https://openalex.org/I157392197 |
| authorships[4].institutions[0].ror | https://ror.org/04a1r5z94 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I157392197 |
| authorships[4].institutions[0].country_code | JO |
| authorships[4].institutions[0].display_name | Hashemite University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Khaled Jallad |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Hashemite University |
| authorships[5].author.id | https://openalex.org/A4202183190 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7942-9018 |
| authorships[5].author.display_name | Ahmad ALoqaily |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ahmad Aloqaily |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Emad Eddien Abdallah |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Emad Eddien Abdallah |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A4280801067 |
| authorships[7].author.orcid | https://orcid.org/0009-0000-0796-8522 |
| authorships[7].author.display_name | Esraa Abu Elsoud |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Esraa Abu Elsoud |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A2956045618 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Yazan Hamdan |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Yazan Hamdan |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A3198479633 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Khaled Jallad |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Khaled Jallad |
| authorships[9].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijai.iaescore.com/index.php/IJAI/article/download/27017/14858 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-05T00:00:00 |
| display_name | Machine and deep learning classifiers for binary and multi-class network intrusion detection systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-06T23:10:59.065948 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8930116891860962 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijai.v14.i6.pp4814-4827 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764408626 |
| best_oa_location.source.issn | 2089-4872, 2252-8938 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2089-4872 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IAES International Journal of Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/27017/14858 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijai.v14.i6.pp4814-4827 |
| primary_location.id | doi:10.11591/ijai.v14.i6.pp4814-4827 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764408626 |
| primary_location.source.issn | 2089-4872, 2252-8938 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2089-4872 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IAES International Journal of Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/27017/14858 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijai.v14.i6.pp4814-4827 |
| publication_date | 2025-12-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25, 63 |
| abstract_inverted_index.an | 172, 196 |
| abstract_inverted_index.as | 129 |
| abstract_inverted_index.be | 67 |
| abstract_inverted_index.by | 80, 104, 139 |
| abstract_inverted_index.in | 8, 37 |
| abstract_inverted_index.is | 62 |
| abstract_inverted_index.of | 3, 27, 57, 97, 175, 199 |
| abstract_inverted_index.on | 59, 180, 187 |
| abstract_inverted_index.to | 52, 73, 93 |
| abstract_inverted_index.82% | 200 |
| abstract_inverted_index.85% | 183 |
| abstract_inverted_index.96% | 176, 202 |
| abstract_inverted_index.IDS | 70, 106, 151 |
| abstract_inverted_index.The | 0, 124, 150 |
| abstract_inverted_index.and | 6, 15, 78, 85, 100, 119, 135, 146, 162, 182, 201, 205 |
| abstract_inverted_index.are | 71 |
| abstract_inverted_index.for | 34, 177, 184, 190, 203 |
| abstract_inverted_index.has | 22 |
| abstract_inverted_index.out | 54 |
| abstract_inverted_index.pre | 131 |
| abstract_inverted_index.the | 4, 38, 44, 60, 95, 98, 192 |
| abstract_inverted_index.try | 51 |
| abstract_inverted_index.vol | 18 |
| abstract_inverted_index.was | 152 |
| abstract_inverted_index.who | 50 |
| abstract_inverted_index.(DL) | 88 |
| abstract_inverted_index.(ML) | 84 |
| abstract_inverted_index.This | 20, 90 |
| abstract_inverted_index.data | 17, 130 |
| abstract_inverted_index.deep | 86 |
| abstract_inverted_index.from | 47 |
| abstract_inverted_index.have | 11 |
| abstract_inverted_index.must | 66 |
| abstract_inverted_index.such | 128 |
| abstract_inverted_index.that | 65, 107 |
| abstract_inverted_index.ume. | 19 |
| abstract_inverted_index.used | 72 |
| abstract_inverted_index.(RF), | 118 |
| abstract_inverted_index.aimed | 92 |
| abstract_inverted_index.carry | 53 |
| abstract_inverted_index.label | 103 |
| abstract_inverted_index.model | 121, 194 |
| abstract_inverted_index.novel | 28 |
| abstract_inverted_index.paper | 125 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.study | 94 |
| abstract_inverted_index.trees | 122 |
| abstract_inverted_index.types | 56 |
| abstract_inverted_index.using | 154 |
| abstract_inverted_index.while | 189 |
| abstract_inverted_index.(ANN), | 115 |
| abstract_inverted_index.(IDS). | 42 |
| abstract_inverted_index.binary | 99, 178, 185 |
| abstract_inverted_index.caused | 24 |
| abstract_inverted_index.corpus | 165 |
| abstract_inverted_index.forest | 117 |
| abstract_inverted_index.hybrid | 109 |
| abstract_inverted_index.neural | 113 |
| abstract_inverted_index.random | 116 |
| abstract_inverted_index.system | 41, 168 |
| abstract_inverted_index.tested | 153 |
| abstract_inverted_index.threat | 46 |
| abstract_inverted_index.(LMTs). | 123 |
| abstract_inverted_index.(SMOTE) | 145 |
| abstract_inverted_index.NSL-KDD | 181, 204 |
| abstract_inverted_index.attacks | 58 |
| abstract_inverted_index.average | 173, 197 |
| abstract_inverted_index.concern | 64 |
| abstract_inverted_index.feature | 133 |
| abstract_inverted_index.handled | 68 |
| abstract_inverted_index.impacts | 96 |
| abstract_inverted_index.machine | 82 |
| abstract_inverted_index.network | 35, 61, 75, 155 |
| abstract_inverted_index.ongoing | 45 |
| abstract_inverted_index.provide | 74 |
| abstract_inverted_index.thereby | 30 |
| abstract_inverted_index.various | 55 |
| abstract_inverted_index.F1-score | 174, 198 |
| abstract_inverted_index.achieved | 195 |
| abstract_inverted_index.applying | 140 |
| abstract_inverted_index.attacks, | 29 |
| abstract_inverted_index.datasets | 138, 160 |
| abstract_inverted_index.entities | 49 |
| abstract_inverted_index.improved | 13 |
| abstract_inverted_index.internet | 5 |
| abstract_inverted_index.learning | 83, 87 |
| abstract_inverted_index.logistic | 120 |
| abstract_inverted_index.managing | 136 |
| abstract_inverted_index.minority | 142 |
| abstract_inverted_index.networks | 114 |
| abstract_inverted_index.proposed | 193 |
| abstract_inverted_index.research | 91 |
| abstract_inverted_index.security | 36, 156 |
| abstract_inverted_index.(NSL-KDD) | 161 |
| abstract_inverted_index.Moreover, | 43 |
| abstract_inverted_index.achieving | 171 |
| abstract_inverted_index.addresses | 126 |
| abstract_inverted_index.catalonia | 163 |
| abstract_inverted_index.datasets, | 170 |
| abstract_inverted_index.detection | 40, 167 |
| abstract_inverted_index.discovery | 159 |
| abstract_inverted_index.employing | 81 |
| abstract_inverted_index.including | 111 |
| abstract_inverted_index.increased | 16 |
| abstract_inverted_index.instances | 102 |
| abstract_inverted_index.integrity | 79 |
| abstract_inverted_index.intrusion | 39, 166 |
| abstract_inverted_index.knowledge | 158 |
| abstract_inverted_index.leverages | 108 |
| abstract_inverted_index.multitude | 26 |
| abstract_inverted_index.synthetic | 141 |
| abstract_inverted_index.technique | 144 |
| abstract_inverted_index.artificial | 112 |
| abstract_inverted_index.authorized | 48 |
| abstract_inverted_index.challenges | 33, 127 |
| abstract_inverted_index.imbalanced | 137 |
| abstract_inverted_index.laboratory | 157 |
| abstract_inverted_index.networking | 14 |
| abstract_inverted_index.phenomenon | 21 |
| abstract_inverted_index.presenting | 31 |
| abstract_inverted_index.selection, | 134 |
| abstract_inverted_index.seriously. | 69 |
| abstract_inverted_index.Pearson’s | 147 |
| abstract_inverted_index.algorithms, | 110 |
| abstract_inverted_index.algorithms. | 89 |
| abstract_inverted_index.correlation | 148 |
| abstract_inverted_index.processing, | 132 |
| abstract_inverted_index.significant | 32 |
| abstract_inverted_index.CIC-IDS-2017 | 206 |
| abstract_inverted_index.advancements | 7 |
| abstract_inverted_index.establishing | 105 |
| abstract_inverted_index.independence | 164 |
| abstract_inverted_index.multi-attack | 101 |
| abstract_inverted_index.oversampling | 143 |
| abstract_inverted_index.subsequently | 23 |
| abstract_inverted_index.technologies | 10 |
| abstract_inverted_index.CIC-IDS-2017, | 188 |
| abstract_inverted_index.availability, | 76 |
| abstract_inverted_index.communication | 9 |
| abstract_inverted_index.proliferation | 2 |
| abstract_inverted_index.significantly | 12 |
| abstract_inverted_index.successively. | 207 |
| abstract_inverted_index.(CIC-IDS-2017) | 169 |
| abstract_inverted_index.classification | 179, 186 |
| abstract_inverted_index.methodologies. | 149 |
| abstract_inverted_index.confidentiality, | 77 |
| abstract_inverted_index.multi-classification, | 191 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.83368161 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |